Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 023401    DOI: 10.1088/1674-1056/23/2/023401
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Stereodynamics study of the H’(2S)+NH(X3-→N(4S) +H2 reaction

Wei Qiang
Department of Applied Physics, Chongqing University of Technology, Chongqing 400050, China
Abstract  The stereodynamics and reaction mechanism of the H’(2S)+NH(X3-→N(4S) +H2 reaction are thoroughly studied at collision energies in the 0.1 eV–1.0 eV range using the quasiclassical trajectory (QCT) on the ground 4A" potential energy surface (PES). The distributions of vector correlations between products and reagents P(θr), i>P(φr) and P(θr, φr) are presented and discussed. The results indicate that product rotational angular momentum j’ is not only aligned, but also oriented along the direction perpendicular to the scattering plane; further, the product H2 presents different rotational polarization behaviors for different collision energies. Furthermore, four polarization-dependent differential cross sections (PDDCSs) of the product H2 are also calculated at different collision energies. The reaction mechanism is analyzed based on the stereodynamics properties. It is found that the abstraction mechanism is appropriate for the title reaction.
Keywords:  quasiclassical trajectory      H’+NH reaction      stereodynamics      mechanism  
Received:  06 April 2013      Revised:  08 May 2013      Accepted manuscript online: 
PACS:  34.10.+x (General theories and models of atomic and molecular collisions and interactions (including statistical theories, transition state, stochastic and trajectory models, etc.))  
  34.50.-s (Scattering of atoms and molecules)  
  34.50.Lf (Chemical reactions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11204392 and 11047125).
Corresponding Authors:  Wei Qiang     E-mail:  qiangwei@cqut.edu.cn
About author:  34.10.+x; 34.50.-s; 34.50.lf

Cite this article: 

Wei Qiang Stereodynamics study of the H’(2S)+NH(X3-→N(4S) +H2 reaction 2014 Chin. Phys. B 23 023401

[1] Bernstein R B, Herschbach D R and Levine R D 1987 J. Phys. Chem. 91 5365
[2] Mcclelland G M and Herschbach D R 1979 J. Phys. Chem. A 83 1445
[3] Jonah C D, Zare R N and Ottinger C 1972 J. Chem. Phys. 56 263
[4] Vallance C 2011 Phys. Chem. Chem. Phys. 13 14427
[5] Han K L, He G Z and Lou N Q 1993 Chin. Phys. Lett. 10 517
[6] Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699
[7] De Miranda M P and Clary D C 1997 J. Chem. Phys. 106 4509
[8] Xu Y, Zhao J, Yue D G, Liu H, Zheng X Y and Meng Q T 2009 Chin. Phys. B 18 5308
[9] Li X H, Wang M S, Pino H, Yang C L and Ma L Z 2009 Phys. Chem. Chem. Phys. 11 10438
[10] Duan L H, Zhang W Q, Xu X S, Cong S L and Chen M D 2009 Mol. Phys. 107 2579
[11] Xu W W, Liu X G, Luan S X, Sun S S and Zhang Q G 2009 Chin. Phys. B 18 339
[12] Garcia J E 2007 J. Phys. Chem. A 111 5792
[13] Czakó G and Bowman J M 2009 J. Chem. Phys. 131 244302
[14] Miller J A and Bowman C T 1989 Energy Combust. Sci. 15 287
[15] Koshi M, Yoshimura M, Fukuda K, Matsui H, Saito K, Watanabe M, Imamura A and Chen C X 1990 J. Chem. Phys. 93 8703
[16] Davidson D F and Hanson R K 1990 Int. J. Chem. Kin. 22 843
[17] Adam L, Hack W, Zhu H, Qu Z W and Schinke R 2005 J. Chem. Phys. 122 114301
[18] Xu Z F, Fang D C and Fu X Y 1997 J. Phys. Chem. A 101 4432
[19] Zhai H S and Zhou P W 2012 Chin. Phys. Lett. 29 063401
[20] Werner H J and Knowles P J 1988 J. Chem. Phys. 89 5803
[21] Pascual R, Schatz G C, Lendvay G and Troya D 2002 J. Phys. Chem. A 106 4125
[22] Jordan M J T, Thompson K C and Collins M A 1995 J. Chem. Phys. 102 5647
[23] Poveda L A and Varandas A J C 2006 Theor. Chem. Acc. 116 404
[24] Poveda L A and Varandas A J C 2005 Phys. Chem. Chem. Phys. 7 2867
[25] Han B R, Yang H, Zheng Y J and Varandas A J C 2010 Chem. Phys. Lett. 493 225
[26] Zhai H S and Han K L 2011 J. Chem. Phys. 135 104314
[27] Duan Z X, Li W L and Qiu M H 2012 J. Chem. Phys. 136 144309
[28] Yue X F 2012 Chin. Phys. B 21 073401
[29] Liu Y F, He X H, Shi D H and Sun J F 2011 Chin. Phys. B 20 078201
[30] Li X H, Wang M S, Pino H, Yang C L and Ma L Z 2009 Phys. Chem. Chem. Phys. 11 10438
[31] Chu T S 2009 J. Comput. Chem. 31 1385
[32] Zhang W Q, Cong S L, Zhang C H, Xu X S and Chen M D 2009 J. Phys. Chem. A 113 4192
[33] Ge M H and Zheng Y J 2011 Chin. Phys. B 20 083401
[34] Yang T G, Yuan J C, Cheng D H and Chen M D 2013 Commn. Comput. Chem. 1 15
[35] Bai M M, Ge M H, Yang H and Zheng Y J 2012 Chin. Phys. B 21 123401
[36] Zhang W Q, Li Y Z, Xu X S and Chen M D 2010 Chem. Phys. 367 115
[37] Xiao J, Yang C L and Wang M S 2012 Chin. Phys. B 21 043101
[38] Li R J, Han K L, Li F E, He G Z and Lou N Q 1994 Chem. Phys. Lett. 220 281
[39] Chen M D, Han K L and Lou N Q 2002 Chem. Phys. Lett. 357 483
[40] Chen M D, Han K L and Lou N Q 2003 J. Chem. Phys. 118 4463
[41] Han K L, He G Z and Lou N Q 1989 Chin. J. Chem. Phys. 2 323
[42] Ding Y J and Shi Y 2011 Comput. Theor. Chem. 963 306
[43] Liu S L and Shi Y 2011 Chin. Phys. B 20 013404
[1] Numerical simulation and experimental validation of multiphysics field coupling mechanisms for a high power ICP wind tunnel
Ming-Hao Yu(喻明浩), Zhe Wang(王哲), Ze-Yang Qiu(邱泽洋), Bo Lv(吕博), and Bo-Rui Zheng(郑博睿). Chin. Phys. B, 2021, 30(6): 065201.
[2] Reputational preference and other-regarding preference based rewarding mechanism promotes cooperation in spatial social dilemmas
Huayan Pei(裴华艳), Guanghui Yan(闫光辉), and Huanmin Wang(王焕民). Chin. Phys. B, 2021, 30(5): 050203.
[3] Decomposition reaction of phosphate rock under the action of microwave plasma
Hui Zheng(郑慧), Meng Yang(杨猛), Cheng-Fa Jiang(江成发), and Dai-Jun Liu(刘代俊). Chin. Phys. B, 2021, 30(4): 045201.
[4] Quench dynamics in 1D model with 3rd-nearest-neighbor hoppings
Shuai Yue(岳帅), Xiang-Fa Zhou(周祥发), and Zheng-Wei Zhou(周正威). Chin. Phys. B, 2021, 30(2): 026402.
[5] First-principles study of co-adsorption behavior of O2 and CO2 molecules on δ -Pu(100) surface
Chun-Bao Qi(戚春保), Tao Wang(王涛), Ru-Song Li(李如松), Jin-Tao Wang(王金涛), Ming-Ao Qin(秦铭澳), and Si-Hao Tao(陶思昊). Chin. Phys. B, 2021, 30(2): 026601.
[6] CdS/Si nanofilm heterojunctions based on amorphous silicon films: Fabrication, structures, and electrical properties
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), Hong-Chun Huang(黄宏春), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(2): 026101.
[7] Sr-doping effects on conductivity, charge transport, and ferroelectricity of Ba0.7La0.3TiO3 epitaxial thin films
Qiang Li(李强), Dao Wang(王岛), Yan Zhang(张岩), Yu-Shan Li(李育珊), Ai-Hua Zhang(张爱华), Rui-Qiang Tao(陶瑞强), Zhen Fan(樊贞), Min Zeng(曾敏), Guo-Fu Zhou(周国富), Xu-Bing Lu(陆旭兵), and Jun-Ming Liu(刘俊明). Chin. Phys. B, 2021, 30(2): 027701.
[8] Mechanism of titanium-nitride chemical mechanical polishing
Dao-Huan Feng(冯道欢), Ruo-Bing Wang(王若冰), Ao-Xue Xu(徐傲雪), Fan Xu(徐帆), Wei-Lei Wang(汪为磊), Wei-Li Liu(刘卫丽), and Zhi-Tang Song(宋志棠). Chin. Phys. B, 2021, 30(2): 028301.
[9] Tip-induced superconductivity commonly existing in the family of transition-metal dipnictides MPn2
Meng-Di Zhang(张孟迪), Sheng Xu(徐升), Xing-Yuan Hou(侯兴元), Ya-Dong Gu(谷亚东), Fan Zhang(张凡), Tian-Long Xia(夏天龙), Zhi-An Ren(任治安), Gen-Fu Chen(陈根富), Ning Hao(郝宁), and Lei Shan(单磊). Chin. Phys. B, 2021, 30(1): 017304.
[10] Synchronization mechanism of clapping rhythms in mutual interacting individuals
Shi-Lan Su(苏世兰), Jing-Hua Xiao(肖井华), Wei-Qing Liu(刘维清), and Ye Wu(吴晔). Chin. Phys. B, 2021, 30(1): 010505.
[11] Review of resistive switching mechanisms for memristive neuromorphic devices
Rui Yang(杨蕊). Chin. Phys. B, 2020, 29(9): 097305.
[12] Oscillation of S5 helix under different temperatures in determination of the open probability of TRPV1 channel
Tie Li(李铁), Jun-Wei Li(李军委), Chun-Li Pang(庞春丽), Hailong An(安海龙), Yi-Zhao Geng(耿轶钊), Jing-Qin Wang(王景芹). Chin. Phys. B, 2020, 29(9): 098701.
[13] Understanding the Li diffusion mechanism and positive effect of current collector volume expansion in anode free batteries
Yan Zhuang(庄严), Zheyi Zou(邹喆乂), Bo Lu(吕浡), Yajie Li(李亚捷), Da Wang(王达), Maxim Avdeev, Siqi Shi(施思齐). Chin. Phys. B, 2020, 29(6): 068202.
[14] Anisotropic plasticity of nanocrystalline Ti: A molecular dynamics simulation
Minrong An(安敏荣), Mengjia Su(宿梦嘉), Qiong Deng(邓琼), Haiyang Song(宋海洋), Chen Wang(王晨), Yu Shang(尚玉). Chin. Phys. B, 2020, 29(4): 046201.
[15] Plastic deformation mechanism transition of Ti/Ni nanolaminate with pre-existing crack: Molecular dynamics study
Meng-Jia Su(宿梦嘉), Qiong Deng(邓琼)†, Min-Rong An(安敏荣), and Lan-Ting Liu(刘兰亭). Chin. Phys. B, 2020, 29(11): 116201.
No Suggested Reading articles found!