Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 028501    DOI: 10.1088/1674-1056/23/2/028501
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Impact of multiplexed reading scheme on nanocrossbar memristor memory’s scalability

Zhu Xuana b, Tang Yu-Huaa b, Wu Chun-Qingb, Wu Jun-Jiea b, Yi Xuna b
a State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha 410073, China;
b School of Computer, National University of Defense Technology, Changsha 410073, China
Abstract  Nanocrossbar is a potential memory architecture to integrate memristor to achieve large scale and high density memory. However, based on the currently widely-adopted parallel reading scheme, scalability of the nanocrossbar memory is limited, since the overhead of the reading circuits is in proportion with the size of the nanocrossbar component. In this paper, a multiplexed reading scheme is adopted as the foundation of the discussion. Through HSPICE simulation, we reanalyze scalability of the nanocrossbar memristor memory by investigating the impact of various circuit parameters on the output voltage swing as the memory scales to larger size. We find that multiplexed reading maintains sufficient noise margin in large size nanocrossbar memristor memory. In order to improve the scalability of the memory, memristors with nonlinear I–V characteristics and high LRS (low resistive state) resistance should be adopted.
Keywords:  nanocrossbar      memristor      multiplexing      reading circuit      voltage swing  
Received:  04 June 2013      Revised:  27 June 2013      Published:  12 December 2013
PACS:  85.40.Bh (Computer-aided design of microcircuits; layout and modeling)  
  07.50.Ek (Circuits and circuit components)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61003082).
Corresponding Authors:  Wu Chun-Qing     E-mail:  wuchunqing@nudt.edu.cn
About author:  85.40.Bh; 07.50.Ek

Cite this article: 

Zhu Xuan, Tang Yu-Hua, Wu Chun-Qing, Wu Jun-Jie, Yi Xun Impact of multiplexed reading scheme on nanocrossbar memristor memory’s scalability 2014 Chin. Phys. B 23 028501

[1] Yohwan K 2009 Proceedings of the 2009 IEEE International Memory Workshop, May 10–14, 2009, Monterey, California, USA, p. 1
[2] Strukov D, Snider G, Stewart D and Williams R 2008 Nature 453 80
[3] Vontobel P O, Robinett W, Kuekes P J, Stewart D R, Straznicky J and Williams R S 2009 Nanotechnology 20 425204
[4] Linn E, Rosezin R, Kugeler C and Waser R 2010 Nat. Mater. 9 403
[5] Kim K, Gaba S, Wheeler D, Cruz-Albrecht J M, Hussain T, Srinivasa N and Lu W 2012 Nano Lett. 12 389
[6] Fang X D, Tang Y H and Wu J J 2012 Chin. Phys. B 21 098901
[7] Zhou J and Huang D 2012 Chin. Phys. B 21 048401
[8] Huang D, Wu J J and Tang Y H 2013 Chin. Phys. B 22 038201
[9] Chen Y, Jung G Y, Ohlberg D A A, Li X, Stewart D R, Jeppesen J O, Nielsen K A, Stoddart J F and Williams R S 2003 Nanotechnology 14 462
[10] Csaba G and Lugli P 2009 IEEE Trans. Nanotechnol. 8 369
[11] Liang J and Wong H S P 2010 IEEE Trans. Electron Dev. 57 2531
[12] Qureshi M S, Pickett M, Miao F and Strachan J P 2011 Proceedings of the IEEE International Symposium on Circuits and Systems, May 15–18, 2011, Rio de Janeiro, Brazil, p. 2954
[13] Yakopcic C, Taha T M, Subramanyam G, Pino R E and Roger S 2011 IEEE. Electron. Dev. Lett. 32 1436
[1] Light slowing and all-optical time division multiplexing of hybrid four-wave mixing signal in nitrogen-vacancy center
Ruimin Wang(王瑞敏), Irfan Ahmed, Faizan Raza, Changbiao Li(李昌彪), Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2020, 29(5): 054204.
[2] Optoelectronic memristor for neuromorphic computing
Wuhong Xue(薛武红), Wenjuan Ci(次文娟), Xiao-Hong Xu(许小红), Gang Liu(刘钢). Chin. Phys. B, 2020, 29(4): 048401.
[3] A method of generating random bits by using electronic bipolar memristor
Bin-Bin Yang(杨彬彬), Nuo Xu(许诺), Er-Rui Zhou(周二瑞), Zhi-Wei Li(李智炜), Cheng Li(李成), Pin-Yun Yi(易品筠), Liang Fang(方粮). Chin. Phys. B, 2020, 29(4): 048505.
[4] Memristor-based vector neural network architecture
Hai-Jun Liu(刘海军), Chang-Lin Chen(陈长林), Xi Zhu(朱熙), Sheng-Yang Sun(孙盛阳), Qing-Jiang Li(李清江), Zhi-Wei Li(李智炜). Chin. Phys. B, 2020, 29(2): 028502.
[5] Nonlinear dynamics in non-volatile locally-active memristor for periodic and chaotic oscillations
Wen-Yu Gu(谷文玉), Guang-Yi Wang(王光义), Yu-Jiao Dong(董玉姣), and Jia-Jie Ying(应佳捷). Chin. Phys. B, 2020, 29(11): 110503.
[6] Dynamics of the two-SBT-memristor-based chaotic circuit
Mei Guo(郭梅), Meng Zhang(张萌), Ming-Long Dou(窦明龙), Gang Dou(窦刚), and Yu-Xia Li(李玉霞). Chin. Phys. B, 2020, 29(11): 110505.
[7] Memristor-based hyper-chaotic circuit for image encryption
Jiao-Jiao Chen(陈娇娇), Deng-Wei Yan(闫登卫), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2020, 29(11): 110504.
[8] Effects of oxygen vacancy concentration and temperature on memristive behavior of SrRuO3/Nb:SrTiO3 junctions
Zhi-Cheng Wang(王志成), Zhang-Zhang Cui(崔璋璋), Hui Xu(徐珲), Xiao-Fang Zhai(翟晓芳), Ya-Lin Lu(陆亚林). Chin. Phys. B, 2019, 28(8): 087303.
[9] Energy feedback and synchronous dynamics of Hindmarsh-Rose neuron model with memristor
K Usha, P A Subha. Chin. Phys. B, 2019, 28(2): 020502.
[10] Electronic synapses based on ultrathin quasi-two-dimensional gallium oxide memristor
Shuopei Wang(王硕培), Congli He(何聪丽), Jian Tang(汤建), Rong Yang(杨蓉), Dongxia Shi(时东霞), Guangyu Zhang(张广宇). Chin. Phys. B, 2019, 28(1): 017304.
[11] Compact and high-efficient wavelength demultiplexing coupler based on high-index dielectric nanoantennas
Jingfeng Tan(谭敬丰), Hua Pang(庞画), Fengkai Meng(孟凤凯), Jin Jiang(蒋进). Chin. Phys. B, 2018, 27(9): 094217.
[12] Highly-sensitive NO, NO2, and NH3 measurements with an open-multipass cell based on mid-infrared wavelength modulation spectroscopy
Xiang Chen(陈祥), Chen-Guang Yang(杨晨光), Mai Hu(胡迈), Jian-Kang Shen(沈建康), Er-Chao Niu(牛二超), Zhen-Yu Xu(许振宇), Xue-Li Fan(范雪丽), Min Wei(魏敏), Lu Yao(姚路), Ya-Bai He(何亚柏), Jian-Guo Liu(刘建国), Rui-Feng Kan(阚瑞峰). Chin. Phys. B, 2018, 27(4): 040701.
[13] A generalized model of TiOx-based memristive devices andits application for image processing
Jiangwei Zhang(张江伟), Zhensen Tang(汤振森), Nuo Xu(许诺), Yao Wang(王耀), Honghui Sun(孙红辉), Zhiyuan Wang(王之元), Liang Fang(方粮). Chin. Phys. B, 2017, 26(9): 090502.
[14] Attempt to generalize fractional-order electric elements to complex-order ones
Gangquan Si(司刚全), Lijie Diao(刁利杰), Jianwei Zhu(朱建伟), Yuhang Lei(雷妤航), Yanbin Zhang(张彦斌). Chin. Phys. B, 2017, 26(6): 060503.
[15] A phenomenological memristor model for synaptic memory and learning behaviors
Nan Shao(邵楠), Sheng-Bing Zhang(张盛兵), Shu-Yuan Shao(邵舒渊). Chin. Phys. B, 2017, 26(11): 118501.
No Suggested Reading articles found!