Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 028201    DOI: 10.1088/1674-1056/23/2/028201

Microstructure and its influence on CH4 adsorption behavior of deep coal

Feng Yan-Yan, Jiang Cheng-Fa, Liu Dai-Jun, Chu Wei
Department of Chemical Engineering, Sichuan University, Chengdu 610065, China
Abstract  In this paper we investigate the influence of microstructure on the CH4 adsorption behavior of deep coal. The coal microstructure is characterized by N2 adsorption at 77 K, scanning electron microscopy (SEM), Raman spectroscopy, and Fourier transform infrared spectroscopy (FT-IR). The CH4 adsorptions are measured at 298 K at pressures up to 5.0 MPa by the the volumetric method and fitted by the Langmuir model. The results show that the Langmuir model fits well with the experimental data, and there is a positive correlation with surface area, pore volume, ID/IG, and CH4 adsorption capacity. The burial depth also affects the methane adsorption capacity of the samples.
Keywords:  CH4 adsorption      deep coal      pore structure      surface morphology  
Received:  27 March 2013      Revised:  23 May 2013      Published:  12 December 2013
PACS:  82.80.Dx (Analytical methods involving electronic spectroscopy)  
  68.43.-h (Chemisorption/physisorption: adsorbates on surfaces)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB201202).
Corresponding Authors:  Liu Dai-Jun, Chu Wei     E-mail:;
About author:  82.80.Dx; 68.43.-h

Cite this article: 

Feng Yan-Yan, Jiang Cheng-Fa, Liu Dai-Jun, Chu Wei Microstructure and its influence on CH4 adsorption behavior of deep coal 2014 Chin. Phys. B 23 028201

[1] He M C and Zhao J 2013 Chin. Phys. B 22 016802
[2] Li X C, Nie B S, Zhang R M and Chi L L 2012 Int. J. Min. Sci. Technol. 22 885
[3] Nie B S, He X Q and Wang E Y 2000 China Saf. Sci. J. 10 24
[4] Zhang T, Ellis G S, Ruppel S C, Milliken K and Yang R 2012 Org. Geochem. 47 120
[5] Luo J J, Liu Y F, Jiang C F, Chu W, Jie W and Xie H P 2011 J. Chem. Eng. Data 56 4919
[6] Yao Y, Liu D and Huang W 2011 Int. J. Coal Geol. 88 135
[7] Moore T A 2012 Int. J. Coal Geol. 101 36
[8] Zhang S, Yang S, Cheng J, Zhang B and Lu C 2011 Procedia Engineering 26 327
[9] Wang Y L, Du B Y, Dou X M, Liu J, Shi B Y, Wang D S and Tang H X 2007 Colloid Surface A 307 16
[10] Nie B S and Duan S M 1998 Journal of Taiyuan University of Technology 29 417 (in Chinese)
[11] Hao S X, Wen J, Yu X P and Chu W 2013 Appl. Surf. Sci. 264 433
[12] Liu D, Yao Y, Tang D, Tang S, Che Y and Huang W 2009 Int. J. Coal Geol. 79 97
[13] Kedzior S and Jelonek I 2013 Int. J. Coal Geol. 111 98
[14] Zhang D, Nie B S, Wang C, Zhao F, Guo J H, Liu X N, Li Q, Li H L and Zhang C 2011 Procedia Engineering 26 1330
[15] Hu S, Li M, Xiang J, Sun L S, Li P S, Su S and Sun X X 2004 Fuel 83 1307
[16] Kedzior S 2009 Int. J. Coal Geol. 80 20
[17] Mastalerz M, Drobniak A, Strapoc D, Solano A W and Rupp J 2008 Int. J. Coal Geol. 76 205
[18] Cai Y, Liu D, Yao Y, Li J and Qiu Y 2011 Int. J. Coal Geol. 88 101
[19] Zhang S H, Tang S H, Tang D Z, Pan Z J and Yang J 2010 Int. J. Coal Geol. 81 117
[20] Wang Y, Du B, Dou X, Liu J, Shi B, Wang D and Tang H 2007 Colloid Surface A 307 16
[21] Wang S F, Yan G Y, Chen S S, Bai Z L, Wang J L, Yu W and Fu G S 2013 Chin. Phys. B 22 037302
[22] Zhao X W, Gao X Y, Chen X M, Chen C and Zhao M K 2013 Chin. Phys. B 22 024202
[23] Smedowski L, Krzesinska M, Kwasny W and Kozanecki M 2011 Energ. Fuel 25 3142
[24] Li C Y, Zhao J T, Fang Y T and Wang Y 2009 Energ. Fuel 23 5099
[25] Mastalerz M, Drobniak A, Walker R and Morse D 2010 Int. J. Coal Geol. 83 467
[26] Landais P and Gerard L 1996 Int. J. Coal Geol. 30 285
[27] Goodman A L, Campus L A and Schroeder K T 2005 Energ. Fuel 19 471
[28] Liu F S, Chu W, Sun W J, Xue Y and Jiang Q 2012 J. Nat. Gas Chem. 21 708
[29] Jiang Q, Chu W, Sun W J, Liu F S and Xue Y 2012 Acta Phys. Chim. Sin. 28 1101
[30] Wang J, Dong B Z, Xu Y, Li Z H, Fan W H, Wu D and Sun Y H 2003 Acta Phys. Sin. 52 635 (in Chinese)
[31] Liang J Q, Liang Z Z, Zhu W B and Su F G 2011 Acta Phys. Sin. 60 057802 (in Chinese)
[32] Ma X X, Guo G W, Tang G Z, Sun M R and Wang L Q 2013 Chin. Phys. B 22 056202
[1] Influence of N+ implantation on structure, morphology, and corrosion behavior of Al in NaCl solution
Hadi Savaloni, Rezvan Karami, Helma Sadat Bahari, Fateme Abdi. Chin. Phys. B, 2020, 29(5): 058102.
[2] Low-temperature plasma enhanced atomic layer deposition of large area HfS2 nanocrystal thin films
Ailing Chang(常爱玲), Yichen Mao(毛亦琛), Zhiwei Huang(黄志伟), Haiyang Hong(洪海洋), Jianfang Xu(徐剑芳), Wei Huang(黄巍), Songyan Chen(陈松岩), Cheng Li(李成). Chin. Phys. B, 2020, 29(3): 038102.
[3] Analysis of the induction of the myelin basic protein binding to the plasma membrane phospholipid monolayer
Lei Zhang(张蕾), Changchun Hao(郝长春), Ying Feng(冯盈), Feng Gao(高峰), Xiaolong Lu(逯晓龙), Junhua Li(李俊花), Runguang Sun(孙润广). Chin. Phys. B, 2016, 25(9): 090507.
[4] Effects of annealing temperature on shape transformation and optical properties of germanium quantum dots
Alireza Samavati, Z. Othaman, S. K. Ghoshal, M. K. Mustafa. Chin. Phys. B, 2015, 24(2): 028103.
[5] Effect of additional silicon on titanium/4H-SiC contacts properties
Zhang Yong-Ping, Chen Zhi-Zhan, Lu Wu-Yue, Tan Jia-Hui, Cheng Yue, Shi Wang-Zhou. Chin. Phys. B, 2014, 23(5): 057303.
[6] Germanium nanoislands grown by radio frequency magnetron sputtering:Annealing time dependent surface morphology and photoluminescence
Alireza Samavati, Z. Othaman, S. K. Ghoshal, R. J. Amjad. Chin. Phys. B, 2013, 22(9): 098102.
[7] Effect of InxGa1-xN “continuously graded” buffer layer on InGaN epilayer grown by metalorganic chemical vapor deposition
Qian Wei-Ning, Su Shi-Chen, Chen Hong, Ma Zi-Guang, Zhu Ke-Bao, He Miao, Lu Ping-Yuan, Wang Geng, Lu Tai-Ping, Du Chun-Hua, Wang Qiao, Wu Wen-Bo, Zhang Wei-Wei. Chin. Phys. B, 2013, 22(10): 106106.
[8] Thickness dependence of grain size and surface roughness for dc magnetron sputtered Au films
Zhang Xin, Song Xiao-Hui, Zhang Dian-Lin. Chin. Phys. B, 2010, 19(8): 086802.
No Suggested Reading articles found!