Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(11): 110310    DOI: 10.1088/1674-1056/22/11/110310
Special Issue: TOPICAL REVIEW — Quantum information
TOPICAL REVIEW—Quantum information Prev   Next  

Towards quantum-enhanced precision measurements:Promise and challenges

Zhang Li-Jian (张利剑)a, Xiao Min (肖敏)a b
a College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China;
b Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA
Abstract  Quantum metrology holds the promise of improving the measurement precision beyond the limit of classical approaches. To achieve such enhancement in performance requires the development of quantum estimation theories as well as novel experimental techniques. In this article, we provide a brief review of some recent results in the field of quantum metrology. We emphasize that the unambiguous demonstration of the quantum-enhanced precision needs a careful analysis of the resources involved. In particular, the implementation of quantum metrology in practice requires us to take into account the experimental imperfections included, for example, particle loss and dephasing noise. For a detailed introduction to the experimental demonstrations of quantum metrology, we refer the reader to another article ‘Quantum metrology’ in the same issue.
Keywords:  quantum metrology      quantum information processing  
Received:  10 October 2013      Accepted manuscript online: 
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
  42.50.Dv (Quantum state engineering and measurements)  
  06.20.-f (Metrology)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2012CB921804 and 2011CBA00205).
Corresponding Authors:  Zhang Li-Jian     E-mail:  lijian.zhang@nju.edu.cn

Cite this article: 

Zhang Li-Jian (张利剑), Xiao Min (肖敏) Towards quantum-enhanced precision measurements:Promise and challenges 2013 Chin. Phys. B 22 110310

[1] Giovannetti V, Lloyd S and Maccone L 2004 Science 306 1330
[2] Giovannetti V, Lloyd S and Maccone L 2011 Nature Photon. 5 222
[3] Braunstein S L 1992 Phys. Rev. Lett. 69 3598
[4] Giovannetti V, Lloyd S and Maccone L 2004 Phys. Rev. Lett. 96 010401
[5] Braunstein S L and Caves C M 1994 Phys. Rev. Lett. 72 3439
[6] Braunstein S L, Caves C M and Milburn G J 1996 Ann. Phys. 247 135
[7] Cremér H 1999 Mathematical Methods of Statistics (PMS-9), Vol. 9 (New York: Princeton University Press)
[8] Fisher R A 1925 Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 22, p. 700 (Cambridge: Cambridge University Press)
[9] Braunstein S L 1992 J. Phys. A: Math. Gen. 25 3813
[10] Anisimov P M, Raterman G M and Chiruvelli A 2010 Phys. Rev. Lett. 104 103602
[11] Pezzé L and Smerzi A 2008 Phys. Rev. Lett. 100 073601
[12] Bollinger J J, Itano W M, Wineland D J and Heinzen D J 1996 Phys. Rev. A 54 4649
[13] Boto A N, Kok P, Abrams D S, Braunstein S L, Williams C P and Dowling J P 2000 Phys. Rev. Lett. 85 2733
[14] Giovannetti V, Lloyd S and Maccone L 2001 Nature 412 417
[15] Hradil Z, Myška R, Peřina J, Zawisky M, Hasegawa Y and Rauch H 1996 Phys. Rev. Lett. 76 4295
[16] Hradil Z and Rěhaćěk J 2005 Phys. Lett. A 334 267
[17] Pezzé L and Smerzi A 2006 Phys. Rev. A 73 011801
[18] Braunstein S L, Lane A S and Caves CM1992 Phys. Rev. Lett. 69 2153
[19] Sanders B C and Milburn G J 1995 Phys. Rev. Lett. 75 2944
[20] Ou Z Y 1996 Phys. Rev. Lett. 77 2352
[21] Giovannetti V, Lloyd S and Maccone L 2012 Phys. Rev. Lett. 108 260405
[22] Giovannetti V, Lloyd S and Maccone L 2003 Phys. Rev. A 67 052109
[23] Hyllus P, Pezzé L and Smerzi A 2010 Phys. Rev. Lett. 105 120501
[24] Tsang M 2012 Phys. Rev. Lett. 108 230401
[25] Ziv J and Zakai M 1969 IEEE Transactions on Information Theory 15 386
[26] Helstrom C W 1976 Quantum Detection and Estimation Theory (New York: Academic Press)
[27] Rivas Áand Luis A 2012 New J. Phys. 14 093052
[28] Giovannetti V and Maccone L 2012 Phys. Rev. Lett. 108 210404
[29] Luis A 2004 Phys. Lett. A 329 8
[30] Beltrán J and Luis A 2005 Phys. Rev. A 72 045801
[31] Roy S M and Braunstein S L 2008 Phys. Rev. Lett. 100 220501
[32] Boixo S, Flammia S T, Caves C M and Geremia J M 2007 Phys. Rev. Lett. 98 090401
[33] Tilma T, Hamaji S, Munro W J and Nemoto K 2010 Phys. Rev. A 81 022108
[34] Luis A 2007 Phys. Rev. A 76 035801
[35] Rivas Á and Luis A 2010 Phys. Rev. Lett. 105 010403
[36] Boixo S, Datta A, Davis M J, Flammia S T, Shaji A and Caves C M 2008 Phys. Rev. Lett. 101 040403
[37] Choi S and Sundaram B 2008 Phys. Rev. A 77 053613
[38] WoolleyMJ, Milburn G J and Caves CM2008 New J. Phys. 10 125018
[39] Rey A M, Jiang L and Lukin M D 2007 Phys. Rev. A 76 053617
[40] Chase B A, Baragiola B Q, Partner H L, Black B D and Geremia J M 2009 Phys. Rev. A 79 062107
[41] Napolitano M, Koschorreck M, Dubost B, Behbood N, Sewell R J and Mitchell M W 2011 Nature 471 486
[42] Escher B M, de Matos Filho R L and Davidovich L 2011 Nature Phys. 7 406
[43] Escher B M, Davidovich L, Zagury N and de Matos Filho R L 2012 Phys. Rev. Lett. 109 190404
[44] Demkowicz-Dobrzański R, Kołodyński J and Guţă M 2012 Nature Commun. 3 1063
[45] Dunningham J A, Burnett K and Barnett S M 2002 Phys. Rev. Lett. 89 150401
[46] Banaszek K, Demkowicz-Dobrzanski R andWalmsley I A 2009 Nature Photon. 3 673
[47] Dorner U, Demkowicz-Dobrzanski R, Smith B J, Lundeen J S, Wasilewski W, Banaszek K and Walmsley I A 2009 Phys. Rev. Lett. 102 040403
[48] Demkowicz-Dobrzanski R, Dorner U, Smith B J, Lundeen J S, Wasilewski W, Banaszek K and Walmsley I A 2009 Phys. Rev. A 80 013825
[49] Knysh S, Smelyanskiy V N and Durki G A 2011 Phys. Rev. A 83 021804
[50] Kacprowicz M, Demkowicz-Dobrzanski R, Wasilewski W, Banaszek K and Walmsley I A 2010 Nature Photon. 4 357
[51] Holland M J and Burnett K 1993 Phys. Rev. Lett. 71 1355
[52] Thomas-Peter N, Langford N K, Datta A, Zhang L, Smith B J, Spring J B, Metcalf B J, Coldenstrodt-Ronge H B, Hu M, Nunn J and Walmsley I A 2011 New J. Phys. 13 055024
[53] Datta A, Zhang L, Thomas-Peter N, Dorner U, Smith B J andWalmsley I A 2011 Phys. Rev. A 83 063836
[54] Zhang X X, Yang Y X and Wang X B 2013 Phys. Rev. A 88 013838
[55] Demkowicz-Dobrzanski R, Banaszek K and Schnabel R 2013 arXiv:1305.7268
[56] Resch K J, Pregnell K L, Prevedel R, Gilchrist A, Pryde G J, O’Brien J L and White A G 2007 Phys. Rev. Lett. 98 223601
[57] Afek I, Ambar O and Silberberg Y 2010 Phys. Rev. Lett. 104 123602
[58] Thomas-Peter N, Smith B J, Datta A, Zhang L, Dorner U andWalmsley I A 2011 Phys. Rev. Lett. 107 113603
[59] Huelga S F, Macchiavello C, Pellizzari T, Ekert A K, Plenio M B and Cirac J I 1997 Phys. Rev. Lett. 79 3865
[60] Chin A W, Huelga S F and Plenio M B 2012 Phys. Rev. Lett. 109 233601
[61] Xiao M, Wu L A and Kimble H J 1987 Phys. Rev. Lett. 59 278
[62] Xiao M, Wu L A and Kimble H J 1988 Opt. Lett. 13 476
[63] Li Y Q, Lynam P, Xiao M and Edwards P J 1997 Phys. Rev. Lett. 78 3105
[64] Li Y Q, Guzun D and Xiao M 1999 Phys. Rev. Lett. 82 5225
[65] Caves C M 1981 Phys. Rev. D 23 1693
[66] Bondurant R S and Shapiro J H 1984 Phys. Rev. D 30 2548
[67] Goda K, Miyakawa O, Mikhailov E E, Saraf S, Adhikari R, McKenzie K, Ward R, Vass S, Weinstein A J and Mavalvala N 2008 Nature Phys. 4 472
[68] The LIGO Scientific Collaboration 2011 Nature Phys. 7 962
[69] Grote H, Danzmann K, Dooley K L, Schnabel R, Slutsky J and Vahlbruch H 2013 Phys. Rev. Lett. 110 181101
[70] Yonezawa H, Nakane D, Wheatley T A, Iwasawa K, Takeda S, Arao H, Ohki K, Tsumura K, Berry DW, Ralph T C,Wiseman H M, Huntington E H and Furusawa A 2012 Science 337 1514
[71] D’Angelo M, Chekhova M V and Shih Y 2001 Phys. Rev. Lett. 87 013602
[72] Lamas-Linares A, Howell J C and Bouwmeester D 2001 Nature 412 887
[73] Walther P, Pan JW, Aspelmeyer M, Ursin R, Gasparoni S and Zeilinger A 2004 Nature 429 158
[74] Mitchell M W, Lundeen J S and Steinberg A M 2004 Nature 429 161
[75] Eisenberg H S, Khoury G, Durkin G A, Simon C and Bouwmeester D 2004 Phys. Rev. Lett. 93 193901
[76] Eisenberg H S, Hodelin J F, Khoury G and Bouwmeester D 2005 Phys. Rev. Lett. 94 090502
[77] Sun F W, Liu B H, Huang Y F, Ou Z Y and Guo G C 2006 Phys. Rev. A 74 033812
[78] Hofmann H F and Ono T 2007 Phys. Rev. A 76 031806
[79] Nagata T, Okamoto R, O’Brien J L, Sasaki K and Takeuchi S 2007 Science 316 726
[80] Gong Y X, Xu P, Bai Y F, Yang J, Leng H Y, Xie Z D and Zhu S N 2012 Phys. Rev. A 86 023835
[81] Liu B and Ou Z Y 2010 Phys. Rev. A 81 023823
[82] Barz S, Cronenberg G, Zeilinger A andWalther P 2010 Nature Photon. 4 553
[83] Wagenknecht C, Li C M, Reingruber A, Bao X H, Goebel A, Chen Y A, Zhang Q, Chen K and Pan J W 2010 Nature Photon. 4 549
[84] Afek I, Ambar O and Silberberg Y Science 328 879
[85] Xiang G Y, Higgins B L, Berry D W, Wiseman H M and Pryde G J 2010 Nature Photon. 5 43
[86] Wolfgramm F, Vitelli C, Beduini F A, Godbout N and Mitchell M W 2012 Nature Photon. 7 28
[87] Kok P, Lee H and Dowling J P 2002 Phys. Rev. A 65 052104
[88] Hofmann H F 2004 Phys. Rev. A 70 023812
[89] Walther P, AspelmeyerMand Zeilinger A 2007 Phys. Rev. A 75 012313
[90] Cable H and Dowling J P 2007 Phys. Rev. Lett. 99 163604
[91] Pryde G J and White A G 2003 Phys. Rev. A 68 052315
[92] Kapale K T and Dowling J P 2007 Phys. Rev. Lett. 99 053602
[93] McCusker K T and Kwiat P G 2009 Phys. Rev. Lett. 103 163602
[94] Ji Z, Wang G, Duan R, Feng Y and Ying M 2008 IEEE Transactions on Information Theory 54 5172
[95] de Burgh M and Bartlett S D 2005 Phys. Rev. A 72 042301
[96] Higgins B L, Berry D W, Bartlett S D, Wiseman H M and Pryde G J 2007 Nature 450 393
[97] Waldherr G, Beck J, Neumann P, Said R S, Nitsche M, Markham M L, Twitchen D J, Twamley J, Jelezko F and Wrachtrup J 2011 Nature Nanotechnology 7 105
[98] Kitagawa M and Ueda M 1993 Phys. Rev. A 47 5138
[99] S?rensen A, Duan L M, Cirac J I and Zoller P 2001 Nature 409 63
[100] Leibfried D, DeMarco B, Meyer V, Lucas D, Barrett M, Britton J, Jelenkovi& cacute B, Itano W M, Langer C and Rosenband D J T 2003 Nature 422 412
[101] Leibfried D, Barrett M D, Schaetz T, Britton J, Chiaverini J, Itano W M, Jost J D, Langer C and Wineland D J 2004 Science 304 1476
[102] Leibfried D, Knill E, Seidelin S, Britton J, Blakestad R B, Chiaverini J, Hume D B, Itano W M, Jost J D, Langer C, Ozeri R, Reichle R and Wineland D J 2005 Nature 438 639
[103] Orzel C, Tuchman A K, Fenselau M L, Yasuda M and Kasevich M A 2001 Science 291 2386
[104] Jones J A, Karlen S D, Fitzsimons J, Ardavan A, Benjamin S C, Briggs G A D and Morton J J L 2009 Science 324 1166
[105] Appel J, Windpassinger P J, Oblak D, Hoff U B, Kjærgaard N and Polzik E S 2009 Proc. Natl. Acad. Sci. USA 106 10960
[106] Sewell R J, Koschorreck M, Napolitano M, Dubost B, Behbood N and Mitchell M W 2012 Phys. Rev. Lett. 109 253605
[107] Chen Y A, Bao X H, Yuan Z S, Chen S, Zhao B and Pan J W 2010 Phys. Rev. Lett. 104 043601
[1] Beating standard quantum limit via two-axis magnetic susceptibility measurement
Zheng-An Wang(王正安), Yi Peng(彭益), Dapeng Yu(俞大鹏), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(4): 040309.
[2] Quantum metrology with coherent superposition of two different coded channels
Dong Xie(谢东), Chunling Xu(徐春玲), and Anmin Wang(王安民). Chin. Phys. B, 2021, 30(9): 090304.
[3] Super-sensitivity measurement of tiny Doppler frequency shifts based on parametric amplification and squeezed vacuum state
Zhi-Yuan Wang(王志远), Zi-Jing Zhang(张子静), and Yuan Zhao(赵远). Chin. Phys. B, 2021, 30(7): 074202.
[4] Multilevel atomic Ramsey interferometry for precise parameter estimations
X N Feng(冯夏宁) and L F Wei(韦联福). Chin. Phys. B, 2021, 30(12): 120601.
[5] Fast achievement of quantum state transfer and distributed quantum entanglement by dressed states
Liang Tian(田亮), Li-Li Sun(孙立莉), Xiao-Yu Zhu(朱小瑜), Xue-Ke Song(宋学科), Lei-Lei Yan(闫磊磊), Er-Jun Liang(梁二军), Shi-Lei Su(苏石磊), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(5): 050306.
[6] Optical enhanced interferometry with two-mode squeezed twin-Fock states and parity detection
Li-Li Hou(侯丽丽), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2020, 29(3): 034203.
[7] Quantum optical interferometry via general photon-subtracted two-mode squeezed states
Li-Li Hou(侯丽丽), Jian-Zhong Xue(薛建忠), Yong-Xing Sui(眭永兴), Shuai Wang(王帅). Chin. Phys. B, 2019, 28(9): 094217.
[8] Quantum interferometry via a coherent state mixed with a squeezed number state
Li-Li Hou(侯丽丽), Yong-Xing Sui(眭永兴), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2019, 28(4): 044203.
[9] Error-detected single-photon quantum routing using a quantum dot and a double-sided microcavity system
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), Shou Zhang(张寿). Chin. Phys. B, 2019, 28(2): 020301.
[10] Quantum information processing with nitrogen-vacancy centers in diamond
Gang-Qin Liu(刘刚钦), Xin-Yu Pan(潘新宇). Chin. Phys. B, 2018, 27(2): 020304.
[11] Quantum metrology with a non-Markovian qubit system
Jiang Huang(黄江), Wen-Qing Shi(师文庆), Yu-Ping Xie(谢玉萍), Guo-Bao Xu(徐国保), Hui-Xian Wu(巫慧娴). Chin. Phys. B, 2018, 27(12): 120301.
[12] Super-sensitive phase estimation with coherent boosted light using parity measurements
Lan Xu(许兰), Qing-Shou Tan(谭庆收). Chin. Phys. B, 2018, 27(1): 014203.
[13] Super-resolution and super-sensitivity of entangled squeezed vacuum state using optimal detection strategy
Jiandong Zhang(张建东), Zijing Zhang(张子静), Longzhu Cen(岑龙柱), Shuo Li(李硕), Yuan Zhao(赵远), Feng Wang(王峰). Chin. Phys. B, 2017, 26(9): 094204.
[14] Probabilistic direct counterfactual quantum communication
Sheng Zhang(张盛). Chin. Phys. B, 2017, 26(2): 020304.
[15] Fidelity between Gaussian mixed states with quantum state quadrature variances
Hai-Long Zhang(张海龙), Chun Zhou(周淳), Jian-Hong Shi(史建红), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2016, 25(4): 040304.
No Suggested Reading articles found!