Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(12): 126301    DOI: 10.1088/1674-1056/22/12/126301
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Investigations of high-pressure and high-temperature behaviors of the newly-discovered willemite-Ⅱ and post-phenacite silicon nitrides

Chen Dong
College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China
Abstract  Using the first-principles method of the plane-wave pseudo-potential, the structural properties of the newly-discovered willemite-Ⅱ Si3N4 (wⅡ phase) and post-phenacite Si3N4 (δ phase) are investigated. The α phase is predicted to undergo a first-order α→wⅡ phase transition at 18.6 GPa and 300 K. Within the quasi-harmonic approximation (QHA), the α→wⅡ phase boundary is also obtained. When the well-known β→γ transition is suppressed by some kinetic reasons, the β→δ phase transformation could be observed in the phase diagram. Besides, the temperature dependences of the cell volume,thermal expansion coefficient, bulk modulus, specific heat, entropy and Debye temperature of the involved phases are determined from the non-equilibrium free energies. The thermal expansion coefficients of wⅡ-Si3N4 show no negative values in a pressure range of 0-30 GPa, which implies that the wⅡ-Si3N4 is mechanically stable. More importantly, the δ-Si3N4 is found to be a negative thermal expansion material. Further experimental investigations may be required to determine the physical properties of wⅡ- and δ-Si3N4 with higher reliability.
Keywords:  first-principles      nitrides      phase boundary      thermal property  
Received:  23 March 2013      Revised:  13 May 2013      Published:  25 October 2013
PACS:  63.20.dk (First-principles theory)  
  81.05.Je (Ceramics and refractories (including borides, carbides, hydrides, nitrides, oxides, and silicides))  
  81.30.-t (Phase diagrams and microstructures developed by solidification and solid-solid phase transformations)  
  65.40.-b (Thermal properties of crystalline solids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11005088 and 11105115), the Key Project of Henan Educational Committee, China (Grant No. 12A140010), and the Special Foundation for Young Teacher of Xinyang Normal University, China (Grant No. 2011084).
Corresponding Authors:  Chen Dong     E-mail:  chchendong2010@163.com

Cite this article: 

Chen Dong Investigations of high-pressure and high-temperature behaviors of the newly-discovered willemite-Ⅱ and post-phenacite silicon nitrides 2013 Chin. Phys. B 22 126301

[1] Southworth D R, Barton R A, Verbridge S S, Ilic B, Fefferman A D, Craighead H G and Parpia J M 2009 Phys. Rev. Lett. 102 225503
[2] Zhang C, Sun J X, Tian R G and Zou S Y 2007 Acta Phys. Sin. 56 5969 (in Chinese)
[3] Kruger M B, Nguyen J H, Li Y M, Caldwell W A, Manghnani M H and Jeanloz R 1997 Phys. Rev. B 55 3456
[4] Ding W G, Sang Y G, Yu W, Yang Y B, Teng X Y and Fu G S 2012 Acta Phys. Sin. 61 247304 (in Chinese)
[5] Ponce F A and Bour D P 1997 Nature 386 351
[6] Liu H X, Li B, Li J, Yuan B and Hao Y 2010 Chin. Phys. B 19 127303
[7] Xu B, Dong J, McMillan P, Shebanova O and Salamat A 2011 Phys. Rev. B 84 014113
[8] Kuwabara A, Matsunaga K and Tanaka I 2008 Phys. Rev. B 78 064104
[9] Zerr A, Miehe G, Serghiou G, Schwarz M, Kroke E, Riedel R, Fuess H, Kroll P and Boehler R 1999 Nature 400 340
[10] Wang L G, Sun J X, Yang W and Tian R G 2008 Acta Phys. Pol. A 114 807
[11] Kroll P 2003 J. Solid State Chem. 176 530
[12] Ding W C, Liu Y, Zhang Y, Guo J C, Zuo Y H, Cheng B W, Yu J Z and Wang Q M 2009 Chin. Phys. B 18 3044
[13] Togo A and Kroll P 2008 J. Comput. Chem. 29 2255
[14] Wendel J A and Goddard Ⅲ W A 1992 J. Chem. Phys. 97 5048
[15] Ching W Y, Xu Y N, Gale J D and Rühle M 1998 J. Am. Ceram. Soc. 81 3189
[16] Tatsumi K, Tanaka I and Adachi H 2002 J. Am. Ceram. Soc. 85 7
[17] Jiang J Z, Lindelov H, Gerward L, Ståhl K, Recio J M, Mori-Sanchez P, Carlson S, Mezouar M, Dooryhee E, Fitch A and Frost D J 2002 Phys. Rev. B 65 161202
[18] Fang C M, de Wijs G A, Hintzen H T and de With G 2003 J. Appl. Phys. 93 5175
[19] Ching W Y, Mo S D, Ouyang L Z and Rulis P 2002 J. Am. Ceram. Soc. 85 75
[20] Dong J J, Sankey O F, Deb S K, Wolf G and McMillan P F 2000 Phys. Rev. B 61 11979
[21] Yashima M, Ando Y and Tabira Y 2007 J. Phys. Chem. B 111 3609
[22] Liu A Y and Cohen M L 1990 Phys. Rev. B 41 10727
[23] Vanderbilt D 1990 Phys. Rev. B 41 7892
[24] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Corso A D, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P and Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502
[25] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[26] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[27] Blanco M A, Francisco E and Luaňa V 2004 Comput. Phys. Commun. 158 57
[28] Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 238
[29] Sin’ko G V and Smirnov N V 2002 J. Phys.: Condens. Matter 14 6989
[30] Hu Q M, Lu S and Yang R 2008 Phys. Rev. B 78 052102
[31] Yu B H, Chen D, Li Y B and Jia Y L 2012 Acta Metall. Sin. (Engl. Lett.) 25 131
[32] Yu B H and Chen D 2012 Chin. Phys. B 21 060508
[33] Wendel J A and Goddard Ⅲ W A 1992 J. Chem. Phys. 97 5048
[34] Yu B H and Chen D 2012 Physica B 407 4660
[35] Debye P 1912 Ann. Phys. 39 789
[36] Terki R, Bertrand G, Aourag H and Coddet C 2008 J. Alloys Compd. 456 508
[1] First-principles analysis of phonon thermal transport properties of two-dimensional WS2/WSe2 heterostructures
Zheng Chang(常征), Kunpeng Yuan(苑昆鹏), Zhehao Sun(孙哲浩), Xiaoliang Zhang(张晓亮), Yufei Gao(高宇飞), Xiaojing Gong(弓晓晶), and Dawei Tang(唐大伟). Chin. Phys. B, 2021, 30(3): 034401.
[2] Structural, mechanical, electronic properties, and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure: A first-principles study
Diyou Jiang(姜迪友), Wenbo Xiao(肖文波), and Sanqiu Liu(刘三秋). Chin. Phys. B, 2021, 30(3): 036202.
[3] A first-principles study on zigzag phosphorene nanoribbons terminated by transition metal atoms
Shuai Yang(杨帅), Zhiyong Wang(王志勇), Xueqiong Dai(戴学琼), Jianrong Xiao(肖剑荣), and Mengqiu Long(龙孟秋). Chin. Phys. B, 2021, 30(2): 027305.
[4] First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst
Jia Shi(史佳), Lei Wang(王蕾), and Qiang Gu(顾强). Chin. Phys. B, 2021, 30(2): 026301.
[5] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[6] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
[7] Temperature-induced phase transition of two-dimensional semiconductor GaTe
Xiaoyu Wang(王啸宇), Xue Wang(王雪), Hongshuai Zou(邹洪帅), Yuhao Fu(付钰豪), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2021, 30(1): 016402.
[8] Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles
Chun-Ying Pu(濮春英), Rong-Mei Yu(于荣梅), Ting Wang(王婷), Zhen-Yan X\"ue(薛振彦), Yong-Sheng Zhu(朱永胜), and Da-Wei Zhou(周大伟). Chin. Phys. B, 2021, 30(1): 017102.
[9] Surface-regulated triangular borophene as Dirac-like materials from density functional calculation investigation
Wenyu Fang(方文玉), Wenbin Kang(康文斌), Jun Zhao(赵军), Pengcheng Zhang(张鹏程). Chin. Phys. B, 2020, 29(9): 096301.
[10] Raman and infrared spectra of complex low energy tetrahedral carbon allotropes from first-principles calculations
Hui Wang(王翚), Ze-Yu Zhang(张泽宇), Xiao-Wu Cai(蔡小五), Zi-Han Liu(刘子晗), Yong-Xiang Zhang(张永翔), Zhen-Long Lv(吕珍龙), Wei-Wei Ju(琚伟伟), Hui-Hui Liu(刘汇慧), Tong-Wei Li(李同伟), Gang Liu(刘钢), Hai-Sheng Li(李海生), Hai-Tao Yan(闫海涛), Min Feng(冯敏). Chin. Phys. B, 2020, 29(9): 093601.
[11] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[12] Two-dimensional hexagonal Zn3Si2 monolayer: Dirac cone material and Dirac half-metallic manipulation
Yurou Guan(官雨柔), Lingling Song(宋玲玲), Hui Zhao(赵慧), Renjun Du(杜仁君), Liming Liu(刘力铭), Cuixia Yan(闫翠霞), Jinming Cai(蔡金明). Chin. Phys. B, 2020, 29(8): 087103.
[13] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
[14] Structural, mechanical, and electronic properties of Zr-Te compounds from first-principles calculations
Peng Wang(王鹏), Ning-Chao Zhang(张宁超), Cheng-Lu Jiang(蒋城露), Fu-Sheng Liu(刘福生), Zheng-Tang Liu(刘正堂), Qi-Jun Liu(刘其军). Chin. Phys. B, 2020, 29(7): 076201.
[15] Dependence of mechanical properties on the site occupancy of ternary alloying elements in γ'-Ni3Al: Ab initio description for shear and tensile deformation
Minru Wen(文敏儒), Xing Xie(谢兴), Huafeng Dong(董华锋), Fugen Wu(吴福根), Chong-Yu Wang(王崇愚). Chin. Phys. B, 2020, 29(7): 078103.
No Suggested Reading articles found!