Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(12): 126102    DOI: 10.1088/1674-1056/22/12/126102

A novel method to prepare Au nanocage@SiO2 nanoparticle

Jiang Tong-Tong, Yin Nai-Qiang, Liu Ling, Lei Jie-Mei, Zhu Li-Xin, Xu Xiao-Liang
Department of Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  Gold (Au) nanocage@SiO2 nanoparticles are prepared by a novel approach. The silver (Ag) nanocube@SiO2 structure is synthetized firstly. Next, the method of etching a SiO2 shell by boiling water is adopted to change the penetration rate of AuCl4- through the SiO2 shell. AuCl4- can penetrate through silica shells of different thickness values to react with the Ag nanocube core by changing the incubation time. The surface plasma resonance (SPR) peak of synthetic Au nanocage@SiO2 can be easily tuned into the near-infrared region. Besides, CdTeS quantum dots (QDs) are successfully connected to the surface of Au nanocage@SiO2, which testifies that the incubation process does not change the property of silica.
Keywords:  Ag nanocube      Au nanocage      silica      nanostructure  
Received:  20 March 2013      Revised:  18 April 2013      Published:  25 October 2013
PACS:  61.46.-w (Structure of nanoscale materials)  
  78.40.-q (Absorption and reflection spectra: visible and ultraviolet)  
  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  78.67.Sc (Nanoaggregates; nanocomposites)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51272246 and 81172082) and the Fundamental Research Funds for the Central Universities, China (Grant No. 2030000001).
Corresponding Authors:  Zhu Li-Xin, Xu Xiao-Liang     E-mail:;

Cite this article: 

Jiang Tong-Tong, Yin Nai-Qiang, Liu Ling, Lei Jie-Mei, Zhu Li-Xin, Xu Xiao-Liang A novel method to prepare Au nanocage@SiO2 nanoparticle 2013 Chin. Phys. B 22 126102

[1] Sun Y G and Xia Y N 2004 J. Am. Chem. Soc. 126 3892
[2] Skrabalak S E, Au L, Li X D and Xia Y N 2007 Nat. Protoc. 2 2183
[3] Chen J, Sun Y G, Lu X M, Au L, Cobley C M and Xia Y N 2008 Acc. Chem. Res. 41 1587
[4] Young J K, Figueroa E R and Drezek R A 2012 Ann. Biomed. Eng. 40 438
[5] Yavuz M S, Cheng Y Y, Chen J Y, Cobley C M, Zhang Q, Rycenga M, Xie J W, Kim C, Song K H, Schwartz A G, Wang L V and Xia Y N 2009 Nat. Mater. 8 935
[6] Yang X M, Skrabalak S, Stein E, Wu B, Wei X B, Xia Y N and Wang L V 2008 Proc. SPIE 6856 68560I
[7] Kong X M, Yu Q, Zhang X F, Du X Z, Gong H and Jiang H 2012 J. Mater. Chem. 22 7767
[8] Bahadur N M, Watanabe S, Furusawa T, Sato M, Kurayama F, Siddiquey I A, Kobayashi Y and Suzuki N 2011 Elsevier B.V. 392 137
[9] Li C Y, Zhu Y H, Zhang X Q, Yang X L and Li C Z 2012 RSC Adv. 2 1765
[10] Zhou F, Liu Y and Li Z Y 2011 Chin. Phys. B 20 037303
[11] Gao F, Han J X, Lü C F, Wang Q, Zhang J, Li Q, Bao L R and Li X J 2012 Nanopart. Res. 14 1191
[12] Mathias S, Christian C, Philip B, Eoin M and Tobias K 2011 Langmuir 27 727
[13] Guo L Q, Guan A H, Lin X L, Zhang C L and Chen G N 2010 Talanta 82 1696
[14] Khlebtsov B, Panfilova E, Khanadeev V, Bibikova O, Terentyuk G, Ivanov A, Rumyantseva V, Shilov I, Ryabova A, Loshchenov V and Khlebtsov N G 2011 ACS Nano. 27 7077
[15] Zhang R C, Liu L and Xu X L 2011 Chin. Phys. B 20 086101
[16] Yin N Q, Liu L, Lei J M, Liu Y S, Gong M G, Wu Y Z, Zhu L X and Xu X L 2012 Chin. Phys. B 21 116101
[17] Siekkinen A R, McLellan J M, Chen J Y and Xia Y N 2006 Chem. Phys. Lett. 432 491
[18] Chen J Y, McLellan J M, Siekkinen A, Xiong Y J, Li Z Y and Xia Y N 2006 J. Am. Chem. Soc. 128 14776
[19] Li L L, Zhang Y Q, Hao N J, Chen D and Tang F Q 2012 Chin. Sci. Bull. 57 36313638
[20] Wong Y J, Zhu L F, Teo W S, Tan Y W, Yang Y H, Wang C and Chen H Y 2011 J. Am. Chem. Soc. 133 11422
[21] Mao W Y, Guo J, Yang W L, Wang C C, He J and Chen J Y 2007 Nanotechnology 18 485611
[22] Liu N G, Prall B S and Klimov V I 2006 J. Am. Chem. Soc. 128 15362
[23] Ung T, Liz-Marzán L M and Mulvaney P 1998 Langmuir 14 3741
[24] Hermoso W, Alves T V, Ornellas F R and Camargo P H C 2012 Eur. Phys. J. D 66 135
[25] Kan C X, Zhu J J and Zhu X G 2008 J. Phys. D: Appl. Phys. 41 155304
[26] Ringe E, McMahon J M, Sohn K, Cobley C, Xia Y N, Huang J X, Schatz G C, Marks L D and Van Duyne R P 2010 J. Phys. Chem. C 114 12513
[1] Optical properties of several ternary nanostructures
Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东). Chin. Phys. B, 2021, 30(1): 017803.
[2] Optical modulation of repaired damage site on fused silica produced by CO2 laser rapid ablation mitigation
Chao Tan(谭超), Lin-Jie Zhao(赵林杰), Ming-Jun Chen(陈明君), Jian Cheng(程健), Zhao-Yang Yin(尹朝阳), Qi Liu(刘启), Hao Yang(杨浩), Wei Liao(廖威). Chin. Phys. B, 2020, 29(5): 054209.
[3] Ab initio calculations on oxygen vacancy defects in strained amorphous silica
Bao-Hua Zhou(周保花), Fu-Jie Zhang(张福杰), Xiao Liu(刘笑), Yu Song(宋宇), Xu Zuo(左旭). Chin. Phys. B, 2020, 29(4): 047103.
[4] Time-dependent photothermal characterization on damage of fused silica induced by pulsed 355-nm laser with high repetition rate
Chun-Yan Yan(闫春燕), Bao-An Liu(刘宝安), Xiang-Cao Li(李香草), Chang Liu(刘畅), Xin Ju(巨新). Chin. Phys. B, 2020, 29(2): 027901.
[5] Atomistic study on tensile fracture of densified silica glass and its dependence on strain rate
Zhi-Qiang Hu(胡志强), Jian-Li Shao(邵建立), Yi-Fan Xie(谢轶凡), and Yong Mei(梅勇). Chin. Phys. B, 2020, 29(12): 128101.
[6] Tuning thermal transport via phonon localization in nanostructures
Dengke Ma(马登科), Xiuling Li(李秀玲), and Lifa Zhang(张力发). Chin. Phys. B, 2020, 29(12): 126502.
[7] Microwave-assisted synthesis of Mg:PbI2 nanostructures and their structural, morphological, optical, dielectric and electrical properties for optoelectronic technology
Mohd. Shkir, Ziaul Raza Khan, T Alshahrani, Kamlesh V. Chandekar, M Aslam Manthrammel, Ashwani Kumar, and S AlFaify$. Chin. Phys. B, 2020, 29(11): 116102.
[8] Mechanical and microstructural response of densified silica glass under uniaxial compression: Atomistic simulations
Yi-Fan Xie(谢轶凡), Feng Feng(冯锋), Ying-Jun Li(李英骏)†, Zhi-Qiang Hu(胡志强), Jian-Li Shao(邵建立)‡, and Yong Mei(梅勇)§. Chin. Phys. B, 2020, 29(10): 108101.
[9] Theoretical studies on alloying of germanene supported on Al (111) substrate
Qian-Xing Chen(陈前行), Hao Yang(杨浩), and Gang Chen(陈刚)†. Chin. Phys. B, 2020, 29(10): 108103.
[10] Broadband visible light absorber based on ultrathin semiconductor nanostructures
Lin-Jin Huang(黄林锦), Jia-Qi Li(李嘉麒), Man-Yi Lu(卢漫仪), Yan-Quan Chen(陈彦权), Hong-Ji Zhu(朱宏基), Hai-Ying Liu(刘海英). Chin. Phys. B, 2020, 29(1): 014201.
[11] Magnetic properties of the double perovskite compound Sr2YRuO6
N. EL Mekkaoui, S. Idrissi, S. Mtougui, I. EL Housni, R. Khalladi, S. Ziti, H. Labrim, L. Bahmad. Chin. Phys. B, 2019, 28(9): 097503.
[12] Lorentz transmission electron microscopy for magnetic skyrmions imaging
Jin Tang(汤进), Lingyao Kong(孔令尧), Weiwei Wang(王伟伟), Haifeng Du(杜海峰), Mingliang Tian(田明亮). Chin. Phys. B, 2019, 28(8): 087503.
[13] Damage characteristics of laser plasma shock wave on rear surface of fused silica glass
Xiong Shen(沈雄), Guo-Ying Feng(冯国英), Sheng Jing(景晟), Jing-Hua Han(韩敬华), Ya-Guo Li(李亚国), Kai Liu(刘锴). Chin. Phys. B, 2019, 28(8): 085202.
[14] Unidirectional plasmonic Bragg reflector based on longitudinally asymmetric nanostructures
Mingsong Chen(陈名松), Lulu Pan(潘璐璐), Yuanfu Lu(鲁远甫), Guangyuan Li(李光元). Chin. Phys. B, 2019, 28(7): 074208.
[15] A revised jump-diffusion and rotation-diffusion model
Hua Li(李华), Yu-Hang Chen(陈昱沆), Bin-Ze Tang(唐宾泽). Chin. Phys. B, 2019, 28(5): 056105.
No Suggested Reading articles found!