Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(11): 117311    DOI: 10.1088/1674-1056/22/11/117311
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effects of stress conditions on the generation of negative bias temperature instability-associated interface traps

Zhang Yue (张月)a b, Pu Shi (蒲石)a b, Lei Xiao-Yi (雷晓艺)a b, Chen Qing (陈庆)a b, Ma Xiao-Hua (马晓华)b c, Hao Yue (郝跃)b
a School of Microelectronics, Xidian University, Xi’an 710071, China;
b State Key Discipline Laboratory of Wide Bandgap Semiconductor Technologies, Key Laboratory of WideBandgap Semiconductor Materials and Devices of Ministry of Education, Xi’an 710071, China;
c School of Technical Physics, Xidian University, Xi’an 710071, China
Abstract  The exponent n of the generation of an interface trap (Nit), which contributes to the power-law negative bias temperature instability (NBTI) degradation, and the exponent’s time evolution are investigated by simulations with varying the stress voltage Vg and temperature T. It is found that the exponent n in the diffusion-limited phase of the degradation process is irrelevant to both Vg and T. The time evolution of the exponent n is affected by the stress conditions, which is reflected in the shift of the onset of the diffusion-limited phase. According to the diffusion profiles, the generation of the atomic hydrogen species, which is equal to the buildup of Nit, is strongly correlated with the stress conditions, whereas the diffusion of the hydrogen species shows Vg-unaffected but T-affected relations through the normalized results.
Keywords:  negative bias temperature instability      reaction–diffusion model      interface trap  
Received:  08 March 2013      Revised:  09 April 2013      Accepted manuscript online: 
PACS:  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  85.30.Tv (Field effect devices)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CBA00606), the National Natural Science Foundation of China (Grant No. 61106106), and the Fundamental Research Funds for the Central Universities, China (Grant No. K50511250008).
Corresponding Authors:  Zhang Yue     E-mail:  zhangy@mail.xidian.edu.cn

Cite this article: 

Zhang Yue (张月), Pu Shi (蒲石), Lei Xiao-Yi (雷晓艺), Chen Qing (陈庆), Ma Xiao-Hua (马晓华), Hao Yue (郝跃) Effects of stress conditions on the generation of negative bias temperature instability-associated interface traps 2013 Chin. Phys. B 22 117311

[1] Huard V, Denais M, Perrier F, Revil N, Parthasarathy C, Bravaix A and Vincent E 2005 Microelectron. Reliab. 45 83
[2] Cao Y R, Ma X H, Hao Y and Tian W C 2010 Chin. Phys. B 19 097306
[3] Stathis J H and Zafar S 2006 Microelectron. Reliab. 46 270
[4] Ma X H, Cao Y R and Hao Y 2010 Chin. Phys. B 19 117308
[5] Li Z H, Liu H X and Hao Y 2006 Acta Phys. Sin. 55 820 (in Chinese)
[6] Schroder D K and Babcock J A 2003 J. Appl. Phys. 94 1
[7] Huard V, Denais M and Parthasarathy C 2006 Microelectron Reliab. 46 1
[8] Grasser T, Gos W, Sverdlov V and Kaczer B 2007 Proceedings of the 45th International Reliability Physics Symposium, April 15–19, 2007 Phoenix, USA, p. 268
[9] Kufluoglu H and Alam M A 2006 IEEE Trans. Electron Dev. 53 1120
[10] Alam M A, Kufluoglu H, Varghese D and Mahapatra S 2007 Microelectron. Reliab. 47 853
[11] Bhardwaj S, Wang W, Vattikonda R, Cao Y and Vrudhula S 2008 IET Circuit Devices Syst. 2 361
[12] Mahapatra S, Ahmed K, Varghese D, Islam A E, Gupta G, Madhav L, Saha D and Alam M A 2007 Proceedings of the 45th International Reliability Physics Symposium, April 15–19, 2007 Phoenix, USA, p. 1
[13] Maheta V, Olsen C, Ahmed K and Mahapatra S 2008 IEEE Trans. Electron Dev. 55 1630
[14] Kumar E N, Maheta V D, Purawat S, Islam A E, Olsen C, Ahmed K, Alam M A and Mahapatra S 2007 Proceedings of the IEEE International Electron Devices Meeting, December 10–12, 2007, San Francisco, USA, p. 809
[1] Impact of O2 post oxidation annealing on the reliability of SiC/SiO2 MOS capacitors
Peng Liu(刘鹏), Ji-Long Hao(郝继龙), Sheng-Kai Wang(王盛凯), Nan-Nan You(尤楠楠), Qin-Yu Hu(胡钦宇), Qian Zhang(张倩), Yun Bai(白云), and Xin-Yu Liu(刘新宇). Chin. Phys. B, 2021, 30(7): 077303.
[2] Enhanced interface properties of diamond MOSFETs with Al2O3 gate dielectric deposited via ALD at a high temperature
Yu Fu(付裕), Rui-Min Xu(徐锐敏), Xin-Xin Yu(郁鑫鑫), Jian-Jun Zhou(周建军), Yue-Chan Kong(孔月婵), Tang-Sheng Chen(陈堂胜), Bo Yan(延波), Yan-Rong Li(李言荣), Zheng-Qiang Ma(马正强), and Yue-Hang Xu(徐跃杭). Chin. Phys. B, 2021, 30(5): 058101.
[3] Improved electrical properties of NO-nitrided SiC/SiO2 interface after electron irradiation
Ji-Long Hao(郝继龙), Yun Bai(白云), Xin-Yu Liu(刘新宇), Cheng-Zhan Li(李诚瞻), Yi-Dan Tang(汤益丹), Hong Chen(陈宏), Xiao-Li Tian(田晓丽), Jiang Lu(陆江), Sheng-Kai Wang(王盛凯). Chin. Phys. B, 2020, 29(9): 097301.
[4] High-mobility SiC MOSFET with low density of interface traps using high pressure microwave plasma oxidation
Xin-Yu Liu(刘新宇), Ji-Long Hao(郝继龙), Nan-Nan You(尤楠楠), Yun Bai(白云), Yi-Dan Tang(汤益丹), Cheng-Yue Yang(杨成樾), Sheng-Kai Wang(王盛凯). Chin. Phys. B, 2020, 29(3): 037301.
[5] Interface and border trapping effects in normally-off Al2O3/AlGaN/GaN MOS-HEMTs with different post-etch surface treatments
Si-Qi Jing(荆思淇), Xiao-Hua Ma(马晓华), Jie-Jie Zhu(祝杰杰)†, Xin-Chuang Zhang(张新创), Si-Yu Liu(刘思雨), Qing Zhu(朱青), and Yue Hao(郝跃). Chin. Phys. B, 2020, 29(10): 107302.
[6] Method of evaluating interface traps in Al2O3/AlGaN/GaN high electron mobility transistors
Si-Qin-Gao-Wa Bao(包斯琴高娃), Xiao-Hua Ma(马晓华), Wei-Wei Chen(陈伟伟), Ling Yang(杨凌), Bin Hou(侯斌), Qing Zhu(朱青), Jie-Jie Zhu(祝杰杰), Yue Hao(郝跃). Chin. Phys. B, 2019, 28(6): 067304.
[7] First-principles investigations of proton generation in α-quartz
Yunliang Yue(乐云亮), Yu Song(宋宇), Xu Zuo(左旭). Chin. Phys. B, 2018, 27(3): 037102.
[8] Passivation effects of phosphorus on 4H-SiC (0001) Si dangling bonds: A first-principles study
Wenbo Li(李文波), Ling Li(李玲), Fangfang Wang(王方方), Liu Zheng(郑柳), Jinghua Xia(夏经华), Fuwen Qin(秦福文), Xiaolin Wang(王晓琳), Yongping Li(李永平), Rui Liu(刘瑞), Dejun Wang(王德君), Yan Pan(潘艳), Fei Yang(杨霏). Chin. Phys. B, 2017, 26(3): 037104.
[9] Detailed study of NBTI characterization in 40-nm CMOS process using comprehensive models
Yan Zeng(曾严), Xiao-Jin Li(李小进), Jian Qing(卿健), Ya-Bin Sun(孙亚宾), Yan-Ling Shi(石艳玲), Ao Guo(郭奥), Shao-Jian Hu(胡少坚). Chin. Phys. B, 2017, 26(10): 108503.
[10] Study on influences of TiN capping layer on time-dependent dielectric breakdown characteristic of ultra-thin EOT high-k metal gate NMOSFET with kMC TDDB simulations
Hao Xu(徐昊), Hong Yang(杨红), Wei-Chun Luo(罗维春), Ye-Feng Xu(徐烨峰), Yan-Rong Wang(王艳蓉), Bo Tang(唐波), Wen-Wu Wang(王文武), Lu-Wei Qi(祁路伟), Jun-Feng Li(李俊峰), Jiang Yan(闫江), Hui-Long Zhu(朱慧珑), Chao Zhao(赵超), Da-Peng Chen(陈大鹏), Tian-Chun Ye(叶甜春). Chin. Phys. B, 2016, 25(8): 087305.
[11] Recovery of PMOSFET NBTI under different conditions
Cao Yan-Rong (曹艳荣), Yang Yi (杨毅), Cao Cheng (曹成), He Wen-Long (何文龙), Zheng Xue-Feng (郑雪峰), Ma Xiao-Hua (马晓华), Hao Yue (郝跃). Chin. Phys. B, 2015, 24(9): 097304.
[12] Characteristics of drain-modulated generation current in n-type metal-oxide-semiconductor field-effect transistor
Chen Hai-Feng (陈海峰), Guo Li-Xin (过立新), Zheng Pu-Yang (郑璞阳), Dong Zhao (董钊), Zhang Qian (张茜). Chin. Phys. B, 2015, 24(7): 078502.
[13] Interfacial and electrical characteristics of a HfO2/n-InAlAs MOS-capacitor with different dielectric thicknesses
Guan He (关赫), Lv Hong-Liang (吕红亮), Guo Hui (郭辉), Zhang Yi-Men (张义门), Zhang Yu-Ming (张玉明), Wu Li-Fan (武利翻). Chin. Phys. B, 2015, 24(12): 126701.
[14] Analysis of recoverable and permanent components of threshold voltage shift in NBT stressed p-channel power VDMOSFET
Danijel Danković, Ninoslav Stojadinović, Zoran Prijić, Ivica Manić, Vojkan Davidović, Aneta Prijić, Snežana Djorić-Veljković, Snežana Golubović. Chin. Phys. B, 2015, 24(10): 106601.
[15] Interface states in Al2O3/AlGaN/GaN metal-oxide-semiconductor structure by frequency dependent conductance technique
Liao Xue-Yang (廖雪阳), Zhang Kai (张凯), Zeng Chang (曾畅), Zheng Xue-Feng (郑雪峰), En Yun-Fei (恩云飞), Lai Ping (来萍), Hao Yue (郝跃). Chin. Phys. B, 2014, 23(5): 057301.
No Suggested Reading articles found!