Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 104211    DOI: 10.1088/1674-1056/22/10/104211

Characteristics of photonic bands generated by quadrangular multiconnected networks

Luo Rui-Fanga, Yang Xiang-Boa b, Lu Jiana, Liu Timon Cheng-Yib
a Key Laboratory of Laser Life Science and Institute of Laser Life Science of Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou 510631, China;
b School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China
Abstract  In this paper, by means of the network equation and generalized dimensionless Floquet-Bloch theorem, we study the influences of the number of connected waveguide segments (NCWS) between adjacent nodes and the matching ratio of waveguide length (MRWL) on the photonic bands generated by quadrangular multiconnected networks (QMNs), and obtain a series of formulae. It is found that multicombining networks (MCNs) and repetitive combining networks (RCNs) are equivalent to each other and they can all be simplified into the simplest fundamental combining systems. It would be useful for adjusting the number, widths, and positions of photonic bands, and would possess potential applications for the designing of all-optical devices and photonic network devices.
Keywords:  photonic band gap      waveguide network      multiconnected network  
Received:  13 March 2013      Revised:  02 April 2013      Published:  30 August 2013
PACS:  42.70.Qs (Photonic bandgap materials)  
  42.79.Gn (Optical waveguides and couplers)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10974061).
Corresponding Authors:  Yang Xiang-Bo     E-mail:

Cite this article: 

Luo Rui-Fang, Yang Xiang-Bo, Lu Jian, Liu Timon Cheng-Yi Characteristics of photonic bands generated by quadrangular multiconnected networks 2013 Chin. Phys. B 22 104211

[1] John S 1998 Science 282 274
[4] Noda S, Tomoda K, Yamamoto N and Chutinan A 2000 Science 289 604
[5] Qi M, Lidorikis E, Rakich P T, Johnson S G, Joannopoulos J D, Ippen E P and Smith H I 2004 Nature 429 538
[6] Vlasov Y A, O’Boyle M, Hamann H F and McNab S J 2005 Nature 438 65
[7] Xu X S, Wang Y Q, Han S Z, Cheng B Y and Zhang D Z 2004 Chin. Phys. 13 1474
[8] Che M, Zhou Y S, Wang F H and Gu B Y 2007 Phys. Rev. B 75 125313
[13] Rauh H, Yampolskaya G I and Yampolskii S V 2012 J. Opt. 14 015101
[14] McGurn A R 2009 Phys. Rev. Lett. 102 203905
[19] Kang X L, Li G J and Li Y P 2009 J. Opt. Soc. Am. B 26 60
[20] Noda S, Chutinan A and Imada M 2010 Chin. Phys. B 19 014201
[23] Shchesnovich V S 1998 Phys. Rev. Lett. 81 5540
[26] Dobrzynski L, Akjouj A, Djafari-Rouhani B, Vasseur J O and Zemmouri J 1998 Phys. Rev. B 57 9388
[27] Cheung S K, Chan T L, Zhang Z Q and Chan C T 2004 Phys. Rev. B 70 125104
[28] Wang Z Y and Yang X 2012 Opt. Commun. 285 3775
[30] Li M, Liu Y and Zhang Z Q 2000 Phys. Rev. B 61 16193
[31] Mir A, Akjouj A, Vasseur J O, Djafari-Roubani B, Fettouhi N, Boudouti E H El, Dobrzynski L and Zemmouri J 2003 J. Phys.: Condens. Matter 15 1593
[32] Stoytchev M and Genack A Z 2008 Phys. Rev. A 77 053816
[34] Lu J, Yang X, Zhang G and Cai L 2011 Phys. Lett. A 375 3904
[35] Aközbek N and John S 1998 Phys. Rev. E 58 3876
[36] Song H H and Yang X B 2010 Chin. Phys. B 19 074213
[37] Zhang Z Q and Sheng P 1994 Phys. Rev. B 49 83
[1] One-dimensional structure made of periodic slabs of SiO2/InSb offering tunable wide band gap at terahertz frequency range
Sepehr Razi, Fatemeh Ghasemi. Chin. Phys. B, 2019, 28(12): 124205.
[2] Extraordinary transmission and reflection in PT-symmetric two-segment-connected triangular optical waveguide networks with perfect and broken integer waveguide length ratios
Jia-Ye Wu(吴嘉野), Xu-Hang Wu(吴栩航), Xiang-Bo Yang(杨湘波), Hai-Ying Li(李海盈). Chin. Phys. B, 2019, 28(10): 104208.
[3] Comment on “Band gaps structure and semi-Dirac point of two-dimensional function photonic crystals” by Si-Qi Zhang et al.
Hai-Feng Zhang(章海锋). Chin. Phys. B, 2018, 27(1): 014205.
[4] Dynamically controlled optical nonreciprocity of a double-ladder system with spontaneously generated coherence in moving atomic optical lattice
Nuo Ba(巴诺), Xiang-Yao Wu(吴向尧), Dong-Fei Li(李东飞), Dan Wang(王丹), Jin-You Fei(费金有), Lei Wang(王磊). Chin. Phys. B, 2017, 26(5): 054207.
[5] Observation of trapped light induced by Dwarf Dirac-cone in out-of-plane condition for photonic crystals
Subir Majumder, Tushar Biswas, Shaymal K Bhadra. Chin. Phys. B, 2016, 25(10): 107102.
[6] Extreme narrow photonic passbands generated from defective two-segment-connected triangular waveguide networks
Tang Zhen-Xing, Yang Xiang-Bo, Lu Jian, Liu Timon Cheng-Yi. Chin. Phys. B, 2014, 23(4): 044207.
[7] Comparison of entanglement trapping among different photonic band gap models
Zhang Ying-Jie, Yang Xiu-Qin, Han Wei, Xia Yun-Jie. Chin. Phys. B, 2013, 22(9): 090307.
[8] A compact in-plane photonic crystal channel drop filter
Zhao Yi-Nan, Li Ke-Zheng, Wang Xue-Hua, Jin Chong-Jun. Chin. Phys. B, 2011, 20(7): 074210.
[9] Photonic band structures of quadrangular multiconnected networks
Song Huan-Huan, Yang Xiang-Bo. Chin. Phys. B, 2010, 19(7): 074213.
[10] Three-dimensional simulation of Ka-band relativistic Cherenkov source with metal photonic-band-gap structures
Gao Xi, Yang Zi-Qiang, Qi Li-Mei, Lan Feng, Shi Zong-Jun, Li Da-Zhi, Liang Zheng. Chin. Phys. B, 2009, 18(6): 2452-2458.
[11] Spontaneous emission spectrum of a four-level atom in a double-band photonic crystal
Wang Jian, Yang Dong, Zhang Han-Zhuang. Chin. Phys. B, 2005, 14(2): 323-330.
[12] Photonic band structures of two-dimensional photonic crystals with deformed lattices
Cai Xiang-Hua, Zheng Wan-Hua, Ma Xiao-Tao, Ren Gang, Xia Jian-Bai. Chin. Phys. B, 2005, 14(12): 2507-2513.
[13] Spontaneous emission spectrum of a three-level atom embedded in photonic crystal
Liu Guo-Qiang, Wang Jian, Zhang Han-Zhuang. Chin. Phys. B, 2005, 14(1): 102-109.
[14] Probe spectrum of a four-level atom in a double-band photonic crystal
Wen Qing-Bo, Wang Jian, Zhang Han-Zhuang. Chin. Phys. B, 2004, 13(9): 1407-1413.
No Suggested Reading articles found!