Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(9): 090305    DOI: 10.1088/1674-1056/22/9/090305
GENERAL Prev   Next  

Spin and pseudospin symmetric Dirac particles in the field of Tietz–Hua potential including Coulomb tensor interaction

Sameer M. Ikhdaira b, Majid Hamzavic
a Department of Physics, Faculty of Science, An-Najah National University, New Campus, Junaid, Nablus, West Bank, Palestine;
b Department of Electrical and Electronic Engineering, Near East University, Nicosia, Northern Cyprus, Mersin 10, Turkey;
c Department of Science and Engineering, Abhar Branch, Islamic Azad University, Abhar, Iran
Abstract  Approximate analytical solutions of the Dirac equation for Tietz-Hua (TH) potential including Coulomb-like tensor (CLT) potential with arbitrary spin-orbit quantum number κ are obtained within the Pekeris approximation scheme to deal with the spin-orbit coupling terms κ (κ±1)r-2. Under the exact spin and pseudospin symmetric limitation, bound state energy eigenvalues and associated unnormalized two-component wave functions of the Dirac particle in the field of both attractive and repulsive TH potential with tensor potential are found using the parametric Nikiforov-Uvarov (NU) method. The cases of the Morse oscillator with tensor potential, the generalized Morse oscillator with tensor potential, and the non-relativistic limits have been investigated.
Keywords:  Dirac equation      Tietz-Hua (TH) potential      Coulomb-like tensor (CLT) potential      generalized Morse potential  
Received:  11 December 2012      Revised:  24 February 2013      Published:  26 July 2013
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  03.65.Fd (Algebraic methods)  
  03.65.Pm (Relativistic wave equations)  
  02.30.Gp (Special functions)  
Fund: Project supported by the Scientific and Technological Research Council of Turkey (TUBITAK).
Corresponding Authors:  Sameer M. Ikhdair, Majid Hamzavi     E-mail:  sikhdair@neu.edu.tr; sikhdair@gmail.com; majid.hamzavi@gmail.com

Cite this article: 

Sameer M. Ikhdair, Majid Hamzavi Spin and pseudospin symmetric Dirac particles in the field of Tietz–Hua potential including Coulomb tensor interaction 2013 Chin. Phys. B 22 090305

[1] Ginocchio J N 2005 Phys. Rep. 414 165
[2] BohrA, Hamamoto I and Mottelson B R 1982 Phys. Scr. 26 267
[3] Dudek J, Nazarewicz W, Szymanski Z and Leander G A 1987 Phys. Rev. Lett. 59 1405
[4] Troltenier D, Bahri C and Draayer J P 1995 Nucl. Phys. A 586 53
[5] Page P R, Goldman T and Ginocchio J N 2001 Phys. Rev. Lett. 86 204
[6] Ginocchio J N, Leviatan A, Meng J and Zhou S G 2004 Phys. Rev. C 69 034303
[7] Ginocchio J N 1997 Phys. Rev. Lett. 78 436
[8] Hecht K T and Adler A 1969 Nucl. Phys. A 137 129
[9] Arima A, Harvey M and Shimizu K 1969 Phys. Lett. B 30 517
[10] Ikhdair S M and Sever R 2010 Appl. Math. Comp. 216 911
[11] Lisboa R, Malheiro M, de Castro A S, Alberto P and Fiolhais M 2004 Phys. Rev. C 69 024319
[12] Akcay H 2009 Phys. Lett. A 373 616
[13] Alberto P, Lisboa R, Malheiro M and de Castro A S 2005 Phys. Rev. C 71 034313
[14] Akcay H and Tezcan C 2009 Int. J. Mod. Phys. C 20 930
[15] Mao G 2003 Phys. Rev. C 67 044318
[16] Furnstahl R J, Rusnak J J and Serot B D 1998 Nucl. Phys. A 632 607
[17] Aydoğdu O and Sever R 2010 Eur. Phys. J. A 43 73
[18] Tietz T 1963 J. Chem. Phys. 38 3036
[19] Hua W 1990 Phys. Rev. A 42 2524
[20] Natanson G A 1991 Phys. Rev. A 44 3377
[21] Levin E, Partridge H and Stallcop J R 1990 J. Thermophys. Heat Transfer 4 469
[22] Pack R T 1972 J. Chem. Phys. 57 4612
[23] Kunc J A and Gordillo-Vázquez F J 1997 J. Phys. Chem. A 101 1595
[24] Morse P M 1929 Phys. Rev. 34 57
[25] Nikiforov A F and Uvarov V B 1988 Special Functions of Mathematical Physics (Berlin: Birkhausr)
[26] Yaşuk F, Berkdemir C and Berkdemir A 2005 J. Phys. A: Math. Gen. 38 6579
[27] Setare M R and Haidari S 2010 Phys. Scr. 81 015201
[28] Ikhdair S M and Sever R 2007 J. Math. Chem. 42 461
[29] Miranda M G, Sun G H and Dong S H 2010 Int. J. Mod. Phys. E 19 123
[30] Hamzavi M and Rajabi A A 2011 Z. Naturforsch. 66a 533
[31] Hamzavi M, Hassanabadi H and Rajabi A A 2010 Int. J. Mod. Phys. E 19 2189
[32] Hamzavi M, Hassanabadi H and Rajabi A A 2011 Int. J. Theor. Phys. 50 454
[33] Ikhdair S M and Sever R 2010 Int. J. Mod. Phys. A 25 3941
[34] Ikhdair S M 2011 Phys. Scr. 83 025002
[35] Cheng Y F and Dai T Q 2007 Phys. Scr. 75 274
[36] Ikhdair S M and Sever R 2007 Ann. Phys. 16 218
[37] Aktaş M and Sever R 2004 J. Mol. Struct.: THEOCHEM 710 223
[38] ŞimşeK M and Eğrifes H 2004 J. Phys. A: Math. Gen. 37 4379
[39] Ikhdair S M and Sever R 2008 Int. J. Mod. Phys. C 19 1425
[40] Eğrifes H and Sever R 2007 Int. J. Theor. Phys. 46 935
[41] Ikhdair S M and Sever R 2009 Phys. Scr. 79 035002
[42] Saad N 2007 Phys. Scr. 76 623
[43] Hamzavi M, Rajabi A A and Hassanabadi H 2010 Few-Body Syst. 48 171
[44] Hamzavi M, Rajabi A A and Hassanabadi H 2010 Phys. Lett. A 374 4303
[45] Hamzavi M, Rajabi A A and Hassanabadi H 2011 Int. J. Mod. Phys. A 26 1363
[46] Ikhdair S M and Sever R 2010 Cent. Eur. J. Phys. 8 652
[47] Ikhdair S M and Sever R 2011 J. Phys. A: Math. Theor. 44 355301
[48] Pekeris C L 1934 Phys. Rev. 45 98
[49] Ikhdair S M 2011 J. Math. Phys. 52 052303
[50] Berkdemir C 2006 Nucl. Phys. A 770 32
[51] Berkdemir C 2009 Nucl. Phys. A 821 262
[52] Aydoğdu O and Sever R 2011 Phys. Lett. B 703 379
[53] Hamzavi M, Rajabi A A and Hassanabadi H 2012 Mol. Phys. 110 389
[54] Bjorken J D and Drell S D 1964 Relativistic Quantum Mechanics (New York: McGraw-Hill)
[55] Ikhdair S M and Sever R 2011 J. Math. Phys. 52 122108
[56] Berkdemir C and Han J 2005 Chem. Phys. Lett. 409 203
[57] Ikhdair S M 2009 Int. J. Mod. Phys. C 20 1563
[58] Ikhdair S M 2010 J. Math. Phys. 51 023525
[59] Ikhdair S M 2009 Chem. Phys. 361 9
[60] Ikhdair S M 2011 J. Quantum Inf. Sci. 1 73
[61] Ikhdair S M 2012 Cent. Eur. J. Phys. 10 361
[62] Ikhdair S M 2012 J. Mod. Phys. 3 170
[63] Ikhdair S M 2012 Mol. Phys. 110 1415
[64] Deng Z H and Fan Y P 1957 Shandong Univ. J. 7 162
[1] Solution of Dirac equation for Eckart potential and trigonometric Manning Rosen potential using asymptotic iteration method
Resita Arum Sari, A Suparmi, C Cari. Chin. Phys. B, 2016, 25(1): 010301.
[2] Approximate analytical solution of the Dirac equation with q-deformed hyperbolic Pöschl-Teller potential and trigonometric Scarf Ⅱ non-central potential
Ade Kurniawan, A. Suparmi, C. Cari. Chin. Phys. B, 2015, 24(3): 030302.
[3] Unsuitable use of spin and pseudospin symmetries with a pseudoscalar Cornell potential
L. B. Castro, A. S. de Castro. Chin. Phys. B, 2014, 23(9): 090301.
[4] Solution of Dirac equation around a charged rotating black hole
Lü Yan, Hua Wei. Chin. Phys. B, 2014, 23(4): 040403.
[5] Bound state solutions of the Dirac equation with the Deng–Fan potential including a Coulomb tensor interaction
S. Ortakaya, H. Hassanabadi, B. H. Yazarloo. Chin. Phys. B, 2014, 23(3): 030306.
[6] Relativistic effect of pseudospin symmetry and tensor coupling on the Mie-type potential via Laplace transformation method
M. Eshghi, S. M. Ikhdair. Chin. Phys. B, 2014, 23(12): 120304.
[7] Pseudoscalar Cornell potential for a spin-1/2 particle under spin and pseudospin symmetries in 1+1 dimension
M. Hamzavi, A. A. Rajabi. Chin. Phys. B, 2013, 22(9): 090301.
[8] Relativistic symmetries in the Hulthén scalar–vector–tensor interactions
Majid Hamzavi, Ali Akbar Rajabi. Chin. Phys. B, 2013, 22(8): 080302.
[9] Relativistic symmetries with the trigonometric Pöschl-Teller potential plus Coulomb-like tensor interaction
Babatunde J. Falaye, Sameer M. Ikhdair. Chin. Phys. B, 2013, 22(6): 060305.
[10] Relativistic symmetries in Rosen–Morse potential and tensor interaction using the Nikiforov–Uvarov method
Sameer M Ikhdair, Majid Hamzavi. Chin. Phys. B, 2013, 22(4): 040302.
[11] Exact solutions of Dirac equation with Pöschl–Teller double-ring-shaped Coulomb potential via Nikiforov–Uvarov method
E. Maghsoodi, H. Hassanabadi, S. Zarrinkamar. Chin. Phys. B, 2013, 22(3): 030302.
[12] Relativistic symmetry of position-dependent mass particle in Coulomb field including tensor interaction
M. Eshghi, M. Hamzavi, S. M. Ikhdair. Chin. Phys. B, 2013, 22(3): 030303.
[13] Spin and pseudospin symmetries of the Dirac equation with shifted Hulthén potential using supersymmetric quantum mechanics
Akpan N. Ikot, Elham Maghsoodi, Eno J. Ibanga, Saber Zarrinkamar, Hassan Hassanabadi. Chin. Phys. B, 2013, 22(12): 120302.
[14] Eigen-spectra in the Dirac-attractive radial problem plus a tensor interaction under pseudospin and spin symmetry with the SUSY approach
S. Arbabi Moghadam, H. Mehraban, M. Eshghi. Chin. Phys. B, 2013, 22(10): 100305.
[15] Bound states of the Dirac equation with position-dependent mass for the Eckart potential
Bahar M. K., Yasuk F.. Chin. Phys. B, 2013, 22(1): 010301.
No Suggested Reading articles found!