Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 085202    DOI: 10.1088/1674-1056/22/8/085202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Pressure ranges of velocity splitting of ablated particles produced by pulsed laser deposition in different inert gases

Ding Xue-Cheng, Wang Ying-Long, Chu Li-Zhi, Deng Ze-Chao, Liang Wei-Hua, Fu Guang-Sheng
College of Physics Science and Technology, Hebei University, Baoding 071002, China
Abstract  The transport of ablated particles produced by single pulsed-laser ablation is simulated via Monte Carlo method. The pressure ranges of velocity splitting of ablated particles in different inert gases are investigated. The result shows that the range of velocity splitting decreases with the atomic mass of the ambient gas increasing. The ambient gas whose atomic mass is more than that of Kr cannot induce the velocity splitting of ablated particles. The results are explained by the underdamping model and the inertia flow model.
Keywords:  ablated particles      pressure ranges      velocity splitting      gas type  
Received:  03 September 2012      Revised:  26 December 2012      Published:  27 June 2013
PACS:  52.65.-y (Plasma simulation)  
  52.25.Fi (Transport properties)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB612305) and the Natural Science Foundation of Hebei Province, China (Grant Nos. E2012201035 and E2011201134).
Corresponding Authors:  Wang Ying-Long     E-mail:  hdwangyl@hbu.edu.cn

Cite this article: 

Ding Xue-Cheng, Wang Ying-Long, Chu Li-Zhi, Deng Ze-Chao, Liang Wei-Hua, Fu Guang-Sheng Pressure ranges of velocity splitting of ablated particles produced by pulsed laser deposition in different inert gases 2013 Chin. Phys. B 22 085202

[1] Lownds D H, Geohegan D B, Puretzky A A, Norton D P and Rouleau C M 1996 Science 273 898
[2] Wang Y L, Chen C, Ding X C, Chu L Z, Deng Z C, Liang W H and Fu G S 2011 Laser Part. Beams 29 105
[3] Kim K H, Watanabe K, Mulegeta D, Freund H and Menzel D 2011 Phys. Rev. Lett. 107 047401
[4] Amorusoa S, Bruzzese R, Wang X and Xia J 2008 Appl. Phys. Lett. 92 041503
[5] Huang Q and Chen J 2009 Appl. Phys. Lett. 95 191104
[6] Wang Y L, Chu L Z, Li Y L and Fu G S 2009 Micro & Nano Lett. 4 39
[7] Wood R F, Chen K R, Leboeuf J N, Puretzky A A and Geohegan D B 1997 Phys. Rev. Lett. 79 1571
[8] Harilal S S, Binghu C V, Tillack M S, Najmabadi F and Gaeris A C 2003 J. Appl. Phys. 93 2380
[9] Ding X C, Wang Y L, Chu L Z, Deng Z C, Liang W H, Galalaldeen I I A and Fu G S 2011 Europhys. Lett. 96 55002
[10] Ding X C, Fu G S, Liang W H, Chu L Z, Deng Z C and Wang Y L 2010 Acta Phys. Sin. 59 3331 (in Chinese)
[11] Leonid V Z and Barbara J G 1997 Appl. Phys. Lett. 71 551
[12] Han M, Gong Y, Zhou J, Yin C, Song C F, Muto N, Takiya T and Iwata Y 2002 Phys. Lett. A 302 182
[13] Bittencurt J A 2004 Fundamentals of Plasma Physics (New York: Springer-Verlag) pp. 560-566
[14] Yoshida T, Takeyama S, Yamada Y and Mutoh K 1996 Appl. Phys. Lett. 68 1772
[1] Numerical simulation on ionic wind in circular channels
Gui-Wen Zhang(张桂文), Jue-Kuan Yang(杨决宽), Xiao-Hui Lin(林晓辉). Chin. Phys. B, 2021, 30(1): 014701.
[2] Research of influence of the additional electrode on Hall thruster plume by particle-in-cell simulation
Xi-Feng Cao(曹希峰), Hui Liu(刘辉), Da-Ren Yu(于达仁). Chin. Phys. B, 2020, 29(9): 095204.
[3] Suppression of auto-resonant stimulated Brillouin scattering in supersonic flowing plasmas by different forms of incident lasers
S S Ban(班帅帅), Q Wang(王清), Z J Liu(刘占军), C Y Zheng(郑春阳), X T He(贺贤土). Chin. Phys. B, 2020, 29(9): 095202.
[4] Effect of radio frequency bias on plasma characteristics of inductively coupled argon discharge based on fluid simulations
Xiao-Yan Sun(孙晓艳), Yu-Ru Zhang(张钰如), Sen Chai(柴森), You-Nian Wang(王友年), Yan-Yan Chu(楚艳艳), Jian-Xin He(何建新). Chin. Phys. B, 2020, 29(9): 095203.
[5] Modes decomposition in particle-in-cell software CEMPIC
Aiping Fang(方爱平), Shanshan Liang(梁闪闪), Yongdong Li(李永东), Hongguang Wang(王洪广), Yue Wang(王玥). Chin. Phys. B, 2020, 29(10): 100205.
[6] Discharge simulation and volt-second consumption analysis during ramp-up on the CFETR tokamak
Cheng-Yue Liu(刘成岳), Bin Wu(吴斌), Jin-Ping Qian(钱金平), Guo-Qiang Li(李国强), Ya-Wei Hou(侯雅巍), Wei Wei(韦维), Mei-Xia Chen(陈美霞), Ming-Zhun Lei(雷明准), Yong Guo(郭勇). Chin. Phys. B, 2020, 29(2): 025202.
[7] The E×B drift instability in Hall thruster using 1D PIC/MCC simulation
Zahra Asadi, Mehdi Sharifian, Mojtaba Hashemzadeh, Mahmood Borhani Zarandi, Hamidreza Ghomi Marzdashti. Chin. Phys. B, 2020, 29(2): 025204.
[8] Characteristics and underlying physics of ionic wind in dc corona discharge under different polarities
Tongkai Zhang(张桐恺), Yu Zhang(张宇), Qizheng Ji(季启政), Ben Li(李犇), Jiting Ouyang(欧阳吉庭). Chin. Phys. B, 2019, 28(7): 075202.
[9] Transmission properties of microwave in rectangular waveguide through argon plasma
Xiaoyu Han(韩晓宇), Dawei Li(李大伟), Meie Chen(陈美娥), Zhan Zhang(张展), Zheng Li(李铮), Yujian Li(李雨键), Junhong Wang(王均宏). Chin. Phys. B, 2019, 28(3): 035204.
[10] Effects of secondary electron emission on plasma characteristics in dual-frequency atmospheric pressure helium discharge by fluid modeling
Yi-Nan Wang(王一男), Shuai-Xing Li(李帅星), Yue Liu(刘悦), Li Wang(王莉). Chin. Phys. B, 2019, 28(2): 025202.
[11] Preliminary investigation on electrothermal instabilities in early phases of cylindrical foil implosions on primary test stand facility
Guanqiong Wang(王冠琼), Delong Xiao(肖德龙), Jiakun Dan(但家坤), Yang Zhang(张扬), Ning Ding(丁宁), Xianbin Huang(黄显宾), Xiaoguang Wang(王小光), Shunkai Sun(孙顺凯), Chuang Xue(薛创), Xiaojian Shu(束小建). Chin. Phys. B, 2019, 28(2): 025203.
[12] Plasma shape optimization for EAST tokamak using orthogonal method
Yuan-Yang Chen(陈远洋), Xiao-Hua Bao(鲍晓华), Peng Fu(傅鹏), Ge Gao(高格). Chin. Phys. B, 2019, 28(1): 015201.
[13] Numerical simulation of the multiple reversed shear Alfvén eigenmodes associated with the triangularity Alfvén gap
Wenjia Wang(王文家), Deng Zhou(周登), Youjun Hu(胡友俊), Yue Ming(明玥), Baolong Hao(郝保龙). Chin. Phys. B, 2018, 27(12): 125202.
[14] Similarity principle of microwave argon plasma at low pressure
Xiao-Yu Han(韩晓宇), Jun-Hong Wang(王均宏), Mei-E Chen(陈美娥), Zhan Zhang(张展), Zheng Li(李铮), Yu-Jian Li(李雨键). Chin. Phys. B, 2018, 27(8): 085206.
[15] Influence of channel length on discharge performance of anode layer Hall thruster studied by particle-in-cell simulation
Xi-Feng Cao(曹希峰), Hui Liu(刘辉), Wen-Jia Jiang(蒋文嘉), Zhong-Xi Ning(宁中喜), Run Li(黎润), Da-Ren Yu(于达仁). Chin. Phys. B, 2018, 27(8): 085204.
No Suggested Reading articles found!