Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 074702    DOI: 10.1088/1674-1056/22/7/074702
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Effects of rotation and magnetic field on nonlinear peristaltic flow of second-order fluid in an asymmetric channel through a porous medium

A. M. Abd-Allaa b, S. M. Abo-Dahaba c, H. D. El-Shahranya
a Department of Mathematics, Faculty of Science, Taif University, Saudi Arabia;
b Department of Mathematics, Faculty of Science, Sohag, Egypt;
c Department of Mathematics, Faculty of Science, South Valley University, Qena 83523, Egypt
Abstract  In this paper, the effects of both rotation and magnetic field of the peristaltic transport of second-order fluid through a porous medium in a channel are studied analytically and computed numerically. The material was represented by the constitutive equations for a second-order fluid. Closed-form solutions under the consideration of long wavelength and low Reynolds number is presented. The analytical expressions for the pressure gradient, pressure rise, friction force, stream function, shear stress, and velocity are obtained in the physical domain. The effects of the non-dimensional wave amplitude, porosity, magnetic field, rotation, and the dimensionless time-mean flow in the wave frame are analyzed theoretically and computed numerically. Numerical results are given and illustrated graphically in each case considered. Comparison was made with the results obtained in the presence and absence of rotation, magnetic field, and porosity. The results indicate that the effects of the non-dimensional wave amplitude, porosity, magnetic field, rotation, and the dimensionless time-mean flow are very pronounced in the phenomena.
Keywords:  peristaltic flow      second-order fluid      magnetic field      porous medium  
Received:  22 October 2012      Revised:  15 January 2013      Published:  01 June 2013
PACS:  47.15.G-  
  47.15.Rq (Laminar flows in cavities, channels, ducts, and conduits)  
  47.27.nd (Channel flow)  
  47.45.Gx (Slip flows and accommodation)  
Corresponding Authors:  A. M. Abd-Alla     E-mail:  mohmrr@yahoo.com

Cite this article: 

A. M. Abd-Alla, S. M. Abo-Dahab, H. D. El-Shahrany Effects of rotation and magnetic field on nonlinear peristaltic flow of second-order fluid in an asymmetric channel through a porous medium 2013 Chin. Phys. B 22 074702

[1] Hayat T, Ali N and Abbas Z 2007 Phys. Lett. A 37 331
[2] Abd-Alla A M, Yahya G A, Mahmoud S R and Alosaimi H S 2012 Meccanica 47 1455
[3] Mahmoud S R, Abd-Alla A M and El-Sheikh M A 2011 Int. J. Mod. Phys. B 25 2713
[4] Tripathi D, Pandey S K and Das S 2011 Acta Astronaut 69 30
[5] Wang Y, Ali N, Hayat T and Oberlack M 2011 Appl. Math. Model 35 3737
[6] Akbar N S, Nadeem S, Hayat T and Hendi A A 2011 Int. J. Heat Mass Tran. 54 4360
[7] Akbar N S, Hayat T, Nadeem S and Hendi A A 2011 Int. J. Heat Mass Tran. 54 1654
[8] Gad N S 2011 Appl. Math. Comput. 217 4313
[9] Nadeem S and Akbar N S 2011 J. Taiwan Inst. Chem. Eng. 42 58
[10] Hayat T, Saleem N, Asghar S, Alhothuali M S and Alhomaidan A 2011 Commun. Nonlinear Sci. Numer. Simulat. 16 3559
[11] Pandey S K, Chaube M K and Tripathi D 2011 J. Theor. Biol. 278 11
[12] Pandey S K, Chaube M K, Nadeem S and Akram S 2010 Commun. Nonlinear Sci. Numer. Simulat. 15 1705
[13] Pandey S K and Chaube M K 2010 Math. Comput. Model. 52 501
[14] Haroun M H 2007 Commun. Nonlinear Sci. Numer. Simulat. 12 1464
[15] Kothandapani M and Srinivas S 2008 Phys. Lett. A 372 1265
[16] Hayat T, Afsar A, Khan M and Asghar S 2007 Comput. Math. Appl. 53 1074
[17] Ali N, Sajid M, Abbas Z and Javed T 2010 Eur. J. Mech. B: Fluids 29 387
[18] Hayat T and Ali N 2008 Commun. Nonlinear Sci. Numer. Simulat. 13 1343
[19] Kothandapani M and Srinivas S 2008 Int. J. Nonlinear Mech. 43 15
[20] Haroun M H 2007 Comput. Mater. Sci. 39 324
[21] Hayat T, Asghar Z, Asghar S and Mesloub S 2010 J. Taiwan Inst. Chem. Eng. 41 553
[22] Nadeem S and Akram S 2010 Math. Comput. Model 52 107
[23] Srinivas S and Gayathri R 2009 Appl. Math. Comput. 215 185
[24] Srinivas S and Pushparaj V 2008 Commun. Nonlinear Sci. Numer. Simulat. 13 1782
[25] Siddiqui A M and Schehawey W H 1994 J. Fluid Mech. 53 257
[26] Shapiro A H, Jaffrin M Y and Weinberg S L 1969 J. Fluid Mech. 37 799
[27] Shukla J B, Parihar R S, Rao B R P and Gupta S P 1980 J. Fluid Mech. 97 225
[28] Mishra M, Ramachandra R and Angew Z 2003 Math. Phys. 54 352
[29] Eytan O and Elad D 1999 Bull. Math. Biol. 61 221
[30] Mekheimer Kh S 2003 J. Porous Media 6 189
[31] Coleman B D and Noll W 1960 Arch. Rational Mech. Anal. 6 355
[1] Transport property of inhomogeneous strained graphene
Bing-Lan Wu(吴冰兰), Qiang Wei(魏强), Zhi-Qiang Zhang(张智强), and Hua Jiang(江华). Chin. Phys. B, 2021, 30(3): 030504.
[2] An electromagnetic view of relay time in propagation of neural signals
Jing-Jing Xu(徐晶晶), San-Jin Xu(徐三津), Fan Wang(王帆), and Sheng-Yong Xu(许胜勇). Chin. Phys. B, 2021, 30(2): 028701.
[3] Novel compact and lightweight coaxial C-band transit-time oscillator
Xiao-Bo Deng(邓晓波), Jun-Tao He(贺军涛), Jun-Pu Ling(令钧溥), Bing-Fang Deng(邓秉方), Li-Li Song(宋莉莉), Fu-Xiang Yang(阳福香), Wei-Li Xu(徐伟力). Chin. Phys. B, 2020, 29(9): 095205.
[4] Enhancement of the photoassociation of ultracold atoms via a non-resonant magnetic field
Ji-Zhou Wu(武寄洲), Yu-Qing Li(李玉清), Wen-Liang Liu(刘文良), Peng Li(李鹏), Xiao-Feng Wang(王晓锋), Peng Chen(陈鹏), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(8): 083303.
[5] Influence of the anisotropy on the magneto-acoustic response of magnetic surface acoustic wave resonators
Yawei Lu(鲁亚巍), Wenbin Hu(胡文彬), Wan Liu(刘婉), Feiming Bai(白飞明). Chin. Phys. B, 2020, 29(6): 067504.
[6] Electrical properties of Ca3-xSmxCo4O9+δ ceramics preparedunder magnetic field
Xiu-Rong Qu(曲秀荣), Yan-Yan Xu(徐岩岩), Shu-Chen Lü(吕树臣), Jian-Min Hu(胡建民). Chin. Phys. B, 2020, 29(4): 046103.
[7] Multi-bubble motion behavior of uniform magnetic field based on phase field model
Chang-Sheng Zhu(朱昶胜), Zhen Hu(胡震), Kai-Ming Wang(王凯明). Chin. Phys. B, 2020, 29(3): 034702.
[8] Cyclotron dynamics of neutral atoms in optical lattices with additional magnetic field and harmonic trap potential
Ai-Xia Zhang(张爱霞), Ying Zhang(张莹), Yan-Fang Jiang(姜艳芳), Zi-Fa Yu(鱼自发), Li-Xia Cai(蔡丽霞), Ju-Kui Xue(薛具奎). Chin. Phys. B, 2020, 29(1): 010307.
[9] Novel transit-time oscillator (TTO) combining advantages of radial-line and axial TTO
Wei-Li Xu(徐伟力), Jun-Tao He(贺军涛), Jun-Pu Ling(令钧溥), Li-Li Song(宋莉莉), Bing-Fang Deng(邓秉方), Ouzhixiong Dai(戴欧志雄), Xing-Jun Ge(葛行军). Chin. Phys. B, 2019, 28(8): 085201.
[10] Axial magnetic field effect in numerical analysis of high power Cherenkov free electron laser
F Bazouband, B Maraghechi. Chin. Phys. B, 2019, 28(6): 064101.
[11] Orientation and alignment during materials processing under high magnetic fields
Zhong-Ming Ren(任忠鸣), Jiang Wang(王江), Rui-Xin Zhao(赵睿鑫). Chin. Phys. B, 2019, 28(4): 048301.
[12] Magnetic field analysis in a diamond anvil cell for Meissner effect measurement by using the diamond NV- center
Lin Zhao(赵琳), Donghui Yue(岳冬辉), Cailong Liu(刘才龙), Min Wang(王敏), Yonghao Han(韩永昊), Chunxiao Gao(高春晓). Chin. Phys. B, 2019, 28(3): 030702.
[13] Magnetochemistry and chemical synthesis
Lin Hu(胡林), Guoliang Xia(夏国良), Qianwang Chen(陈乾旺). Chin. Phys. B, 2019, 28(3): 037102.
[14] Selective synthesis of three-dimensional ZnO@Ag/SiO2@Ag nanorod arrays as surface-enhanced Raman scattering substrates with tunable interior dielectric layer
Jia-Jia Mu(牟佳佳), Chang-Yi He(何畅意), Wei-Jie Sun(孙伟杰), Yue Guan(管越). Chin. Phys. B, 2019, 28(12): 124204.
[15] Optical response of an inverted InAs/GaSb quantum well in an in-plane magnetic field
Xiaoguang Wu(吴晓光). Chin. Phys. B, 2019, 28(10): 107302.
No Suggested Reading articles found!