Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 074401    DOI: 10.1088/1674-1056/22/7/074401
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Determining the thermophysical properties of Al-doped ZnO nanoparticles by the photoacoustic technique

T. A. El-Brolossya b, O. Sabera c, S. S. Ibrahima d
a Department of Physics, Faculty of Science, King Faisal University, Al-Ahsa, Saudi Arabia;
b Department of Physics, Faculty of Science, Ain Shams University, Cairo, Egypt;
c Egyptian Petroleum Research Institute, Cairo, Egypt;
d Department of Physics, Faculty of Science, Cairo University, Giza, Egypt
Abstract  Thermal conductivity and specific heat capacity of undoped and Al-doped (1-10 at.%) ZnO nanoparticles prepared using solvent thermal method are determined by measuring both thermal diffusivity and thermal effusivity of a pressed powder compact of the prepared nanoparticles using laser-induced photoacoustic technique. The impact of Al doping versus microstructure of the samples on such thermal parameters has been investigated. The results reveal an obvious enhancement in the specific heat capacity when decreasing the particle size, while the effect of Al doping on the specific heat capacity is minor. The measured thermal conductivities are about one order of magnitude smaller than that of the bulk ZnO due to several nested reducing heat transfer mechanisms. The results also show that Al doping significantly influences the thermal resistance. Using a simple thermal impedance model, the added thermal resistance due to Al dopant has been estimated.
Keywords:  ZnO nanoparticles      microstructure      specific heat      thermal conductivity  
Received:  05 November 2012      Revised:  15 January 2013      Published:  01 June 2013
PACS:  44.30.+v (Heat flow in porous media)  
  44.10.+i (Heat conduction)  
  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
  66.10.cd (Thermal diffusion and diffusive energy transport)  
Fund: Project supported by the Deanship of Scientific Research, King Faisal University, Saudi Arabia (Grant No. 130154).
Corresponding Authors:  T. A. El-Brolossy     E-mail:  elbrolosyta@yahoo.com

Cite this article: 

T. A. El-Brolossy, O. Saber, S. S. Ibrahim Determining the thermophysical properties of Al-doped ZnO nanoparticles by the photoacoustic technique 2013 Chin. Phys. B 22 074401

[1] Yoshinari A, Ishida K, Murai K and Moriga T 2009 Mater. Res. Bull. 44 432
[2] Sedky A and El-Suheel E 2012 Chin. Phys. B 21 116103
[3] Lupan O, Pauport'e T and Viana B 2010 J. Phys. Chem. C 114 14781
[4] Yao Y H and Cao Q X 2012 Chin. Phys. B 21 124205
[5] Pan F, Guo Y, Cheng F F, Fa T and Yao S D 2011 Chin. Phys. B 20 127501
[6] Zhang Q, Dandeneau C S, Zhou X and Cao G 2009 Adv. Mater. 21 4087
[7] Lupan O, Ursaki V, Chai G, Chow L, Emelchenko G A, Tiginyanu I M, Gruzintsev A N and Redkin A N 2010 Sensor. Actuat. B 144 56
[8] Wang X, Song J, Liu J and Wang Z L 2007 Science 316 102
[9] Lee J, Kang B S, Hicks B, Chancellor T F, Chu B H, Wang H T, Keselowsky B G, Ren F and Lele T P 2008 Biomaterials 39 3743
[10] Ohtaki M, Tsubota T, Eguchi K and Arai H 1996 J. Appl. Phys. 79 1816
[11] Cheng H, Xu X J and Hng H H 2009 J. Am. Ceram. Int. 35 3067
[12] Zhou H M, Yi D Q, Yu Z M, Xiao L R and Li J 2007 Thin Solid Films 515 6909
[13] Srinivasan G, Rajendra Kumar R T and Kumar J 2007 Opt. Mater. 30 314
[14] Arredondo E J L, Maldonado A, Asomoza R, Acosta D R, Lira M A M, de la M and Olvera L 2005 Thin Solid Films 490 132
[15] Fathollahi V and Amini M M 2001 Mater. Lett. 50 235
[16] Chen K J, Fang T H, Hung F Y, Ji L W, Chang S J, Young S J and Hsiao Y J 2008 Appl. Surf. Sci. 254 5791
[17] Olorunyolemi T, Birnboim A, Carmel Y, Wilson O C and Lloyd I K 2002 J. Am. Ceram. Soc. 85 1249
[18] Alvarez-Quintana J, Martínez E, Pérez-Tijerina E, Pérez-García S A and Rodríguez-Viejo J 2010 J. Appl. Phys. 107 063713
[19] Huang Z X, Tang Z A, Yu J and Bai S 2011 Physica B 406 084320
[20] Xu Y, Goto M, Kato R, Tanaka Y and Kagawa Y 2012 J. Appl. Phys. 111 818
[21] Tan Z C and Di Y Y 2006 Prog. Chem. 18 1234
[22] Abdalla S, Easawi K, El-Brolossy T A, Yossef G M, Negm S and Talaat H 2003 Rev. Sci. Instrum. 74 848
[23] Philip A, Joseph L K, Irimpan M L, Krishnan B, Radhakrishnan P, Nampoori V P N and Natarajan R 2007 Phys. Stat. Sol. (a) 204 737
[24] Jothi Rajan M A, Vivekanandam T S, Radhakrishman S K, Ramachandran K and Umapathy S 2004 J. Appl. Polym. Sci. 93 1071
[25] Jothi Rajan M A, Mathavan T, Vivekanandam T S and Umapathy S 2006 J. Appl. Polym. Sci. 100 3756
[26] Bonno B, Laportp J and Rousset Y 1980 J. Appl. Phys. 67 2253
[27] Poult P and Chambron J 1989 J. Appl. Phys. 51 1738
[28] Zhan Y, Zhou X, Fua B and Chen Y 2011 J. Hazard. Mater. 187 348
[29] Saber O, El-Brolossy T A and Al Jaafari A A 2012 Water Air Soil Poll. 223 4615
[30] Sanchez-L Vega A, Salazar A, Ocariz A, Ponier L, Gomez W, Viuar L M and Mawcho E 1997 Appl. Phys. A 65 15
[31] Raman S S, Nampoori V P N, Vallabhan C P G, Ambadas G and Sugunan S 1995 Appl. Phys. Lett. 67 2939
[32] El-Brolossy T A 2012 Indian J. Phys. 86 39
[33] Gadzhiev G G 2003 High Temperature 41 778
[34] Wang L, Tan Z, Meng S, Liang D and Li G 2001 J. Nanoparticle Res. 3 483
[35] Wang L, Tan Z, Meng S, Druzhinina A, Varushchenco R A and Li G 2001 J. Non-Cryst. Solids 296 139
[36] Baletto F and Ferando R 2005 Rev. Mod. Phys. 77 371
[37] Tan Z, Wang L and Shi Q 2009 Pure Appl. Chem. 81 1871
[38] Tschöpe A and Birringer R 1993 Acta Metall. Mater. 41 2791
[39] Xu Y, Goto M, Kato R, Tanaka Y and Kagawa Y 2012 J. Appl. Phys. 111 084320
[40] Zhao Y M, Zhu C L, Wang S G, Tian J Z, Yang D J, Chen C K, Cheng H and Hing P 2004 J. Appl. Phys. 96 4563
[41] Landauer R 1952 J. Appl. Phys. 23 779
[42] Poulier C, Smith D S and Absi J 2007 J. Eur. Ceram. Soc. 27 475
[1] Leakage of an eagle flight feather and its influence on the aerodynamics
Di Tang (唐迪), Dawei Liu(刘大伟), Yin Yang(杨茵), Yang Li(李阳), Xipeng Huang(黄喜鹏), and Kai Liu(刘凯). Chin. Phys. B, 2021, 30(3): 034701.
[2] Insights into the physical properties and anisotropic nature of ErPdBi with an appearance of low minimum thermal conductivity
S K Mitro, R Majumder, K M Hossain, Md Zahid Hasan, Md Emran Hossain, and M A Hadi. Chin. Phys. B, 2021, 30(1): 016203.
[3] Magnetic properties and promising cryogenic magneto-caloric performances of Gd20Ho20Tm20Cu20Ni20 amorphous ribbons
Yikun Zhang(张义坤), Bingbing Wu(吴兵兵), Dan Guo(郭丹), Jiang Wang(王江), and Zhongming Ren(任忠鸣). Chin. Phys. B, 2021, 30(1): 017501.
[4] High-resolution bone microstructure imaging based on ultrasonic frequency-domain full-waveform inversion
Yifang Li(李义方), Qinzhen Shi(石勤振), Ying Li(李颖), Xiaojun Song(宋小军), Chengcheng Liu(刘成成), Dean Ta(他得安), and Weiqi Wang(王威琪). Chin. Phys. B, 2021, 30(1): 014302.
[5] Scaling behavior of thermal conductivity in single-crystalline α-Fe2O3 nanowires
Qilang Wang(王啟浪), Yunyu Chen(陈允玉), Adili Aiyiti(阿地力·艾依提), Minrui Zheng(郑敏锐), Nianbei Li(李念北), Xiangfan Xu(徐象繁). Chin. Phys. B, 2020, 29(8): 084402.
[6] Ultra-low thermal conductivity of roughened silicon nanowires: Role of phonon-surface bond order imperfection scattering
Heng-Yu Yang(杨恒玉), Ya-Li Chen(陈亚利), Wu-Xing Zhou(周五星), Guo-Feng Xie(谢国锋), Ning Xu(徐宁). Chin. Phys. B, 2020, 29(8): 086502.
[7] Modeling of microporosity formation and hydrogen concentration evolution during solidification of an Al-Si alloy
Qingyu Zhang(张庆宇), Dongke Sun(孙东科), Shunhu Zhang(章顺虎), Hui Wang(王辉), Mingfang Zhu(朱鸣芳). Chin. Phys. B, 2020, 29(7): 078104.
[8] Effect of annealing temperature on coercivity of Nd-Fe-B magnets with TbFeAl doping by process of hot-pressing
Ze-Teng Shu(舒泽腾), Bo Zheng(郑波), Guang-Fei Ding(丁广飞), Shi-Cong Liao(廖是聪), Jing-Hui Di(邸敬慧), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Lei Shi(石磊). Chin. Phys. B, 2020, 29(5): 057501.
[9] Molecular dynamics simulation of thermal conductivity of silicone rubber
Wenxue Xu(徐文雪), Yanyan Wu(吴雁艳), Yuan Zhu(祝渊), Xin-Gang Liang(梁新刚). Chin. Phys. B, 2020, 29(4): 046601.
[10] Erratum to “Indium doping effect on properties of ZnO nanoparticles synthesized by sol-gel method”
S Mourad, J El Ghoul, K Omri, K Khirouni. Chin. Phys. B, 2020, 29(3): 039901.
[11] Tuning thermal transport via phonon localization in nanostructures
Dengke Ma(马登科), Xiuling Li(李秀玲), and Lifa Zhang(张力发). Chin. Phys. B, 2020, 29(12): 126502.
[12] Lattice thermal conductivity of β12 and χ3 borophene
Jia He(何佳), Yulou Ouyang(欧阳宇楼), Cuiqian Yu(俞崔前), Pengfei Jiang(蒋鹏飞), Weijun Ren(任卫君), and Jie Chen(陈杰). Chin. Phys. B, 2020, 29(12): 126503.
[13] Thermoelectric properties of orthorhombic silicon allotrope Si (oP32) from first-principles calculations
Pei Zhang(张培), Tao Ouyang(欧阳滔), Chao Tang(唐超), Chao-Yu He(何朝宇), Jin Li(李金), Chun-Xiao Zhang(张春小), and Jian-Xin Zhong(钟建新). Chin. Phys. B, 2020, 29(11): 118401.
[14] Multi-scale elastoplastic mechanical model and microstructure damage analysis of solid expandable tubular
Hui-Juan Guo(郭慧娟), Ying-Hua Liu(刘应华), Yi-Nao Su(苏义脑), Quan-Li Zhang(张全立), and Guo-Dong Zhan(詹国栋)†. Chin. Phys. B, 2020, 29(10): 104602.
[15] Specific heat in superconductors
Hai-Hu Wen(闻海虎). Chin. Phys. B, 2020, 29(1): 017401.
No Suggested Reading articles found!