Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 074704    DOI: 10.1088/1674-1056/22/7/074704
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

An improved element-free Galerkin method for solving generalized fifth-order Korteweg-de Vries equation

Feng Zhao, Wang Xiao-Dong, Ouyang Jie
Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710129, China
Abstract  In this paper, an improved element-free Galerkin (IEFG) method is proposed to solve the generalized fifth-order Korteweg-de Vries (gfKdV) equation. When the traditional element-free Galerkin (EFG) method is used to solve such an equation, unstable or even wrong numerical solutions may be obtained due to the violation of the consistency conditions of the moving least-squares (MLS) shape functions. To solve this problem, the EFG method is improved by employing the improved moving least-squares (IMLS) approximation based on the shifted polynomial basis functions. The effectiveness of the IEFG method for the gfKdV equation is investigated by using some numerical examples. Meanwhile, the motion of single solitary wave and the interaction of two solitons are simulated using the IEFG method.
Keywords:  element-free Galerkin method      shifted polynomial basis      generalized fifth-order Korteweg-de Vries equation      solitary wave  
Received:  11 October 2012      Revised:  08 January 2013      Published:  01 June 2013
PACS:  47.35.Fg (Solitary waves)  
  04.30.Nk (Wave propagation and interactions)  
  02.70.Dh (Finite-element and Galerkin methods)  
  47.10.ab (Conservation laws and constitutive relations)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB025903).
Corresponding Authors:  Ouyang Jie     E-mail:  jieouyang@nwpu.edu.cn

Cite this article: 

Feng Zhao, Wang Xiao-Dong, Ouyang Jie An improved element-free Galerkin method for solving generalized fifth-order Korteweg-de Vries equation 2013 Chin. Phys. B 22 074704

[1] Kawahara T 1972 J. Phys. Soc. Jpn. 33 260
[2] Benjamin T B, Bona J L and Mahony J J 1972 Phil. Trans. R. Soc. 272 47
[3] Hereman W and Nuseir A 1997 Math. Comput. Simul. 43 13
[4] Tam H W and Hu X B 2000 Phys. Lett. A 272 174
[5] Lnc M 2006 Appl. Math. Comput. 172 72
[6] Fan E 2003 Chaos Soliton. Fract. 16 819
[7] Wazwaz A M 2007 Appl. Math. Comput. 184 1002
[8] Xin Y, Gao Y T, Sun Z Y and Liu Y 2010 Phys. Scr. 81 045402
[9] Mohyud-Din S T, Negahdary E and Usman M 2012 Int. J. Numer. Method H 22 641
[10] Belytschko T, Lu Y Y and Gu L 1994 Int. J. Numer. Methods Eng. 37 229
[11] Liu G R and Gu Y T 2005 An Introduction to Meshfree Methods and Their Programming (Netherlands: Springer) pp. 102-106
[12] Zhang L, Ouyang J and Zhang X H 2008 Phys. Lett. A 372 5625
[13] Zhang X H, Ouyang J and Zhang L 2009 Eng. Anal. Bound. Elem. 33 356
[14] Wang J F, Sun F X and Cheng R J 2010 Chin. Phys. B 19 060201
[15] Cheng R J and Cheng Y M 2011 Chin. Phys. B 20 070206
[16] Cheng R J and Ge H X 2012 Chin. Phys. B 21 040203
[17] Jin X Z, Li G and Aluru N R 2001 Comput. Model. Eng. Sci. 2 447
[18] Fernánez-Méndez S and Huerta A 2004 Comput. Methods Appl. Mech. Eng. 193 1257
[19] Belytschko T, Krongauz Y and Organ D 1996 Comput. Methods Appl. Mech. Eng. 139 3
[20] Yang L, Zhang F J and Wang Y H 2002 Chaos Soliton. Fract. 13 337
[21] Uddin M, Haq S and Islam S U 2009 Appl. Math. Comput. 212 458
[22] Parker A 2000 Physica D 137 25
[23] Goktas U and Hereman W 1997 J. Symb. Comput. 24 591
[1] Propagation dynamics of relativistic electromagnetic solitary wave as well as modulational instability in plasmas
Rong-An Tang(唐荣安), Tiao-Fang Liu(刘调芳), Xue-Ren Hong(洪学仁), Ji-Ming Gao(高吉明), Rui-Jin Cheng(程瑞锦), You-Lian Zheng(郑有莲), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(1): 015201.
[2] Exact transverse solitary and periodic wave solutions in a coupled nonlinear inductor-capacitor network
Serge Bruno Yamgoué, Guy Roger Deffo, Eric Tala-Tebue, François Beceau Pelap. Chin. Phys. B, 2018, 27(9): 096301.
[3] Decaying solitary waves propagating in one-dimensional damped granular chain
Zongbin Song(宋宗斌), Xueying Yang(杨雪滢), Wenxing Feng(封文星), Zhonghong Xi(席忠红), Liejuan Li(李烈娟), Yuren Shi(石玉仁). Chin. Phys. B, 2018, 27(7): 074501.
[4] Nucleus-acoustic solitary waves in self-gravitating degenerate quantum plasmas
D M S Zaman, M Amina, P R Dip, A A Mamun. Chin. Phys. B, 2018, 27(4): 040402.
[5] Head-on collision between two solitary waves in a one-dimensional bead chain
Fu-Gang Wang(王扶刚), Yang-Yang Yang(杨阳阳), Juan-Fang Han(韩娟芳), Wen-Shan Duan(段文山). Chin. Phys. B, 2018, 27(4): 044501.
[6] Solitary wave for a nonintegrable discrete nonlinear Schrödinger equation in nonlinear optical waveguide arrays
Li-Yuan Ma(马立媛), Jia-Liang Ji(季佳梁), Zong-Wei Xu(徐宗玮), Zuo-Nong Zhu(朱佐农). Chin. Phys. B, 2018, 27(3): 030201.
[7] Envelope solitary waves and their reflection and transmission due to impurities in a granular material
Wen-Qing Du(杜文青), Jian-An Sun(孙建安), Yang-Yang Yang(杨阳阳), Wen-Shan Duan(段文山). Chin. Phys. B, 2018, 27(1): 014501.
[8] Simulations of solitary waves of RLW equation by exponential B-spline Galerkin method
Melis Zorsahin Gorgulu, Idris Dag, Dursun Irk. Chin. Phys. B, 2017, 26(8): 080202.
[9] Topology optimization using the improved element-free Galerkin method for elasticity
Yi Wu(吴意), Yong-Qi Ma(马永其), Wei Feng(冯伟), Yu-Min Cheng(程玉民). Chin. Phys. B, 2017, 26(8): 080203.
[10] Quasi-periodic solutions and asymptotic properties for the nonlocal Boussinesq equation
Zhen Wang(王振), Yupeng Qin(秦玉鹏), Li Zou(邹丽). Chin. Phys. B, 2017, 26(5): 050504.
[11] Fully nonlinear (2+1)-dimensional displacement shallow water wave equation
Feng Wu(吴锋), Zheng Yao(姚征), Wanxie Zhong(钟万勰). Chin. Phys. B, 2017, 26(5): 054501.
[12] Meshless analysis of an improved element-free Galerkin method for linear and nonlinear elliptic problems
Yao-Zong Tang(唐耀宗), Xiao-Lin Li(李小林). Chin. Phys. B, 2017, 26(3): 030203.
[13] (2+1)-dimensional dissipation nonlinear Schrödinger equation for envelope Rossby solitary waves and chirp effect
Jin-Yuan Li(李近元), Nian-Qiao Fang(方念乔), Ji Zhang(张吉), Yu-Long Xue(薛玉龙), Xue-Mu Wang(王雪木), Xiao-Bo Yuan(袁晓博). Chin. Phys. B, 2016, 25(4): 040202.
[14] A new model for algebraic Rossby solitary waves in rotation fluid and its solution
Chen Yao-Deng, Yang Hong-Wei, Gao Yu-Fang, Yin Bao-Shu, Feng Xing-Ru. Chin. Phys. B, 2015, 24(9): 090205.
[15] Exponential B-spline collocation method for numerical solution of the generalized regularized long wave equation
Reza Mohammadi. Chin. Phys. B, 2015, 24(5): 050206.
No Suggested Reading articles found!