Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 057801    DOI: 10.1088/1674-1056/22/5/057801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principle study on optical properties of N-La-codoped anatase TiO

Wang Qinga, Liang Ji-Fenga, Zhang Ren-Huib, Li Qiangc, Dai Jian-Fenga
a School of Science, Lanzhou University of Technology, Lanzhou 730050, China;
b State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
c Sichuan Provincial Key Laboratory of Computational Physics, Yibin University, Yibin 644000, China
Abstract  The electronic structures, deformation charge density, dipole moment, and optical properties of N-La-codoped anatase titanium dioxide (TiO2) are studied using the plane-wave ultrasoft pseudopotential method based on density functional theory (DFT). The optical properties of two-ion-doped TiO2are analyzed via electronic structures, deformation charge density, and dipole moment. For the model of N-La-doped TiO2, smaller atom fraction of N and La atoms induces better optical properties. The absorption edges of two doped TiO2 models redshift to the visible-light region.
Keywords:  optical property      first-principle study      electronic structure      deformation charge density  
Received:  11 July 2012      Revised:  12 December 2012      Accepted manuscript online: 
PACS:  78.20.Bh (Theory, models, and numerical simulation)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  78.40.Fy (Semiconductors)  
  71.15.-m (Methods of electronic structure calculations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 50873047).
Corresponding Authors:  Wang Qing     E-mail:  wangqing@lut.cn

Cite this article: 

Wang Qing, Liang Ji-Feng, Zhang Ren-Hui, Li Qiang, Dai Jian-Feng First-principle study on optical properties of N-La-codoped anatase TiO 2013 Chin. Phys. B 22 057801

[1] Wang B L and Hu L L 2004 Chin. Phys. 13 1887
[2] Li C Y, Wang J B and Wang Y Q 2012 Chin. Phys. B 21 098102
[3] Gole J L, Stout J D, Burda C, Lou Y B and Chen X B 2004 Phys. Chem. B 4 108
[4] Zhang T H, Piao L Y, Zhao S L, Xu Z, Wu Q and Kong C 2012 Chin. Phys. B 21 118401
[5] Zhang X C, Zhao L J, Fan C M, Liang Z H and Han P D 2012 Acta Phys. Sin. 61 077101 (in Chinese)
[6] Anpo M, Takeuchi M, kimura T, Hidaka M and Rakhmawaty D 2007 J. Catal. 246 235
[7] Cheng L, Gan Z H, Liu W and Zhao X Z 2012 Acta Phys. Sin. 61 237107 (in Chinese)
[8] Gao P, Wu J, Liu Q J and Zhou W F 2010 Chin. Phys. B 19 087103
[9] Chen W G, Yuan P F, Zhang S, Sun Q, Liang E J and Jia Y 2012 Physica B 407 1038
[10] Li C, Hou Q Y, Zhang Z D, Zhao C W and Zhang B 2012 Acta Phys. Sin. 61 167103 (in Chinese)
[11] Fujii H, Inata K, Ohtaki M, Eguchi K and Arai H 2001 J. Mater. Sci. 36 527
[12] Otaka H, Kira M, Yano K, Ito S, Mitekura H, Kawata T and Matsui F 2004 J. Photochem. Photobiol. A 164 67
[13] Xiong B T, Zhou B X, Bai J, Zheng Q, Liu Y B, Cai W M and Cai J 2008 Chin. Phys. B 17 3713
[14] Hong X G, Du L C, Ye M P and Weng Y X 2004 Chin. Phys. B 13 720
[15] Zhao Z Y and Liu Q 2008 J. Catal. Lett. 124 111
[16] Asahi R, Morikawa T, Ohwaki T, Aoki K and Taga Y 2001 Science 293 269
[17] Irie H, Watanabe Y and Hashimoto K 2003 J. Phys. Chem. B 107 5483
[18] Lindgren T, Mwabora J M, Avendano E, Jonsson J, Hoel A, Granqvist C G and Lindquist S E 2003 J. Phys. Chem. B 107 5709
[19] Torres G R, Lindgren T, Lu J, Granqvist C G and Lindquist S E 2004 J. Phys. Chem. B 108 5995
[20] Nakamura R, Tanaka T and Nakato Y 2004 J. Phys. Chem. B 108 10617
[21] Lee J Y, Park J and Cho J H 2005 Appl. Phys. Lett. 87 11904
[22] Dai S J, Hu C W and Du L 2008 Acta Chim. Sin. 66 1620
[23] Lin J and Yu J C 1998 J. Photochem. Photobiol. A 116 63
[24] Jing L Q, Sun X J, Xin B F, Wang B Q, Cai W M and Fu H G 2004 J. Solid State Chem. 177 3375
[25] Xu X H, Tian Y and Wu J F 2008 J. WuHan Univ. Technol. 30 543
[26] Liu P, Li R P and Dong H C 2008 Chin. Rare Earth. 29 5
[27] Ding P, Liu F M, Zhou C C, Zhong W W, Zhang H, Cai L G and Zeng L G 2010 Chin. Phys. B 19 118102
[28] Yan Z Y, Zhang D K, Miao H, Shang Y B, Yang J, Ye Y X, Hu X Y, Liu E Z and Fan J 2011 Chin. Phys. B 20 087803
[29] Li G H, Wu Y C and Zhang L D 2001 Chin. Phys. B 10 148
[30] Gong S and Liu B G 2012 Chin. Phys. B 21 057104
[31] Chen Q and Cao H H 2004 Chin. Phys. 13 2121
[32] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter. 14 2717
[33] Lu Z H, Ma D W, Zhang J, Xu G L and Yang Z X 2012 Chin. Phys. B 21 047505
[34] Jeremy K B, Timothy H and Gordon J M 1987 J. Am. Chem. Soc. 109 3639
[35] Zhang R H, Wang Q, Liang J, Li Q, Dai J F and Li W X 2011 Physica B 407 2709
[36] Sato J, Kobayashi H and Inoue Y 2003 J. Phys. Chem. B 107 7970
[37] Gao P, Zhang X J, Zhou W F, Wu J and Liu Q J 2010 J. Semicond. 31 032001
[38] Sato J, Kobayashi H, Ikarashi K, Saito N, Nishiyama H and Inoue Y 2004 J. Phys. Chem. B 108 4369
[39] Wei H Y, Wu Y S, Lun N and Zhao F 2004 J. Mater. Sci. 39 1305
[1] High-throughput identification of one-dimensional atomic wires and first principles calculations of their electronic states
Feng Lu(卢峰), Jintao Cui(崔锦韬), Pan Liu(刘盼), Meichen Lin(林玫辰), Yahui Cheng(程雅慧), Hui Liu(刘晖), Weichao Wang(王卫超), Kyeongjae Cho, and Wei-Hua Wang(王维华). Chin. Phys. B, 2021, 30(5): 057304.
[2] Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms
Cheng-Wei Wu(吴成伟), Changqing Xiang(向长青), Hengyu Yang(杨恒玉), Wu-Xing Zhou(周五星), Guofeng Xie(谢国锋), Baoli Ou(欧宝立), and Dan Wu(伍丹). Chin. Phys. B, 2021, 30(3): 037304.
[3] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[4] Surface-regulated triangular borophene as Dirac-like materials from density functional calculation investigation
Wenyu Fang(方文玉), Wenbin Kang(康文斌), Jun Zhao(赵军), Pengcheng Zhang(张鹏程). Chin. Phys. B, 2020, 29(9): 096301.
[5] Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)
Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟). Chin. Phys. B, 2020, 29(8): 087101.
[6] Structural, electronic, and magnetic properties of quaternary Heusler CrZrCoZ compounds: A first-principles study
Xiao-Ping Wei(魏小平), Tie-Yi Cao(曹铁义), Xiao-Wei Sun(孙小伟), Qiang Gao(高强), Peifeng Gao(高配峰), Zhi-Lei Gao(高治磊), Xiao-Ma Tao(陶小马). Chin. Phys. B, 2020, 29(7): 077105.
[7] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
[8] Surface for methane combustion: O(3P)+CH4→OH+CH3
Ya Peng(彭亚), Zhong-An Jiang(蒋仲安), Ju-Shi Chen(陈举师). Chin. Phys. B, 2020, 29(7): 073401.
[9] First-principles calculation of influences of La-doping on electronic structures of KNN lead-free ceramics
Ting Wang(王挺), Yan-Chen Fan(樊晏辰), Jie Xing(邢洁), Ze Xu(徐泽), Geng Li(李庚), Ke Wang(王轲), Jia-Gang Wu(吴家刚), Jian-Guo Zhu(朱建国). Chin. Phys. B, 2020, 29(6): 067702.
[10] Refractive index of ionic liquids under electric field: Methyl propyl imidazole iodide and several derivatives
Ji Zhou(周吉), Shi-Kui Dong(董士奎), Zhi-Hong He(贺志宏), Yan-Hu Zhang(张彦虎). Chin. Phys. B, 2020, 29(4): 047801.
[11] HfN2 monolayer: A new direct-gap semiconductor with high and anisotropic carrier mobility
Yuan Sun(孙源), Bin Xu(徐斌), Lin Yi(易林). Chin. Phys. B, 2020, 29(2): 023102.
[12] Doping effects on the stacking fault energies of the γ' phase in Ni-based superalloys
Weijie Li(李伟节), Chongyu Wang(王崇愚). Chin. Phys. B, 2020, 29(2): 026401.
[13] Influence of transition metals (Sc, Ti, V, Cr, and Mn) doping on magnetism of CdS
Zhongqiang Suo(索忠强), Jianfeng Dai(戴剑锋), Shanshan Gao(高姗姗), and Haoran Gao(高浩然)$. Chin. Phys. B, 2020, 29(11): 117502.
[14] Electronic structure of correlated topological insulator candidate YbB6 studied by photoemission and quantum oscillation
T Zhang(张腾), G Li(李岗), S C Sun(孙淑翠), N Qin(秦娜), L Kang(康璐), S H Yao(姚淑华), H M Weng(翁红明), S K Mo, L Li(李璐), Z K Liu(柳仲楷), L X Yang(杨乐仙), Y L Chen(陈宇林). Chin. Phys. B, 2020, 29(1): 017304.
[15] Electronic structure of single-crystalline graphene grown on Cu/Ni (111) alloy film
Xue-Fu Zhang(张学富), Zhong-Hao Liu(刘中灏), Wan-Ling Liu(刘万领), Xiang-Le Lu(卢祥乐), Zhuo-Jun Li(李卓君), Qing-Kai Yu(于庆凯), Da-Wei Shen(沈大伟), Xiao-Ming Xie(谢晓明). Chin. Phys. B, 2019, 28(8): 086103.
No Suggested Reading articles found!