Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 057504    DOI: 10.1088/1674-1056/22/5/057504

Monte Carlo study of nanowire magnetic properties

R. Masroura b, L. Bahmada, A. Benyoussefb
a Laboratoire de Magnétisme et Physique des Hautes Energies, URAC 12,Université Mohammed V-Agdal, Faculté des Sciences, B.P. 1014, Rabat, Morocco;
b Laboratory of Materials, Process, Environment and Quality, Cady Ayyad University, National School of Applied Sciences, Safi, Morocco
Abstract  In this work, we use Monte Carlo simulations to study the magnetic properties of a nanowire system based on a honeycomb lattice, in the absence as well as in the presence of both an external magnetic field and crystal field. The system is formed with NL layers having spins that can take the values σ =± 1/2 and S=± 1,0. The blocking temperature is deduced, for each spin configuration, depending on the crystal field Δ. The effect of the exchange interaction coupling Jp between the spin configurations σ and S is studied for different values of temperature at fixed crystal field. The established ground-state phase diagram, in the plane (Jp, Δ), shows that the only stable configurations are: (1/2,0), (1/2,+1), and (1/2,-1). The thermal magnetization and susceptibility are investigated for the two spin configurations, in the absence as well as in the presence of a crystal field. Finally, we establish the hysteresis cycle for different temperature values, showing that there is almost no remaining magnetization in the absence of the external magnetic field, and that the studied system exhibits a super-paramagnetic behavior.
Keywords:  Monte Carlo simulations      nanowire      magnetic field      crystal field  
Received:  07 September 2012      Revised:  03 December 2012      Accepted manuscript online: 
PACS:  75.75.+a  
  77.80.B- (Phase transitions and Curie point)  
  71.70.Gm (Exchange interactions)  
  61.46.Fg (Nanotubes)  
Corresponding Authors:  L. Bahmad     E-mail:

Cite this article: 

R. Masrour, L. Bahmad, A. Benyoussef Monte Carlo study of nanowire magnetic properties 2013 Chin. Phys. B 22 057504

[1] Harris P J F 1991 Carbon Nano-wires and Related Structures. New Materials for the Twenty-first Century (Cambridge: Cambridge University Press)
[2] Ball P 1993 Designing the Molecular World: Chemistry at the Frontier (Princeton, NJ: Princeton University Press)
[3] Dresselhaus M S, Dresselhaus G and Eklund P C 1996 Fullerens and Carbon Nano-wires (San Diego: Academic Press)
[4] Carbon Nano-wires. Preparation and Properties 1997 (edited by Ebbesen T W) (Boca Raton, FL: CRC Press)
[5] Iijima S 1991 Nature 56 354
[6] Escrig J, Landeros P, Altbir D, Vogel E E and Vargas P 2007 J. Magn. Magn. Matter 308 233
[7] Lü B, Xu Y, Wu D and Sun Y 2008 Particuology 6 334
[8] Gao J H, Zhan Q F, He W, Sun D L and Cheng Z H 2005 Appl. Phys. Lett. 86 232506
[9] Peng Y, Cullis T, Mobus G, Xu X J and Inkson B 2007 Nanotechnology 18 485704
[10] Hu H N, Chen H Y and Yu S Y 2006 J. Magn. Magn. Matter 299 170
[11] Schaaf P, Zhang K, Lange C, Holz A, Weisheit M and Fähler S 2007 Appl. Surf. Sci. 253 8107
[12] Takata K M and Sumodjo P T A 2007 Electrochimica Acta 52 6089
[13] Liu H R, Lu Q F, Han X F, Liu X G, Xu B S and Jia H S 2012 Appl. Surf. Sci. 258 7401
[14] Konstantinova E 2008 J. Magn. Magn. Matter 320 2721
[15] Bahmad L, Masrour R and Benyoussef A 2012 J. Supercond. Nov. Magn. 25 2015
[16] Masrour R, Bahmad L and Benyoussef A 2012 J. Magn. Magn. Matter (in press)
[17] Bahmad L, Benyoussef A and Ez-Zahraouy H 2002 Phys. Rev. E 66 056117
[18] Xiao C M and Li C S 2007 Acta Phys. Sin. 56 2434 (in Chinese)
[19] Xiao S, Liu M Z, Shang J and Wang H 2012 Chin. Phys. B 21 020514
[20] Xiao S, Liu M Z, Wang J J and Wang H 2011 Chin. Phys. B 20 060509
[21] Zhu Z L, Ding Y L, Wang Z Y, Gu J H and Lu J X 2010 Chin. Phys. B 19 106803
[22] Xiao S, Cai J J, Wang R L, Liu M Z and Liu F 2009 Chin. Phys. B 18 5103
[23] Garcia C, Martinez M F and Gonzalo J A 2003 arXiv:0306355 [cond-mat.stat-mech]
[1] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[2] In-plane oriented CH3NH3PbI3 nanowire suppression of the interface electron transfer to PCBM
Tao Wang(王涛), Zhao-Hui Yu(于朝辉), Hao Huang(黄昊), Wei-Guang Kong(孔伟光), Wei Dang(党伟), and Xiao-Hui Zhao(赵晓辉). Chin. Phys. B, 2021, 30(6): 066801.
[3] A modified analytical model of the alkali-metal atomic magnetometer employing longitudinal carrier field
Chang Chen(陈畅), Yi Zhang(张燚), Zhi-Guo Wang(汪之国), Qi-Yuan Jiang(江奇渊), Hui Luo(罗晖), and Kai-Yong Yang(杨开勇). Chin. Phys. B, 2021, 30(5): 050707.
[4] Mechanical property and deformation mechanism of gold nanowire with non-uniform distribution of twinned boundaries: A molecular dynamics simulation study
Qi-Xin Xiao(肖启鑫), Zhao-Yang Hou(侯兆阳), Chang Li(李昌), and Yuan Niu(牛媛). Chin. Phys. B, 2021, 30(5): 056101.
[5] Magnetization and magnetic phase diagrams of a spin-1/2 ferrimagnetic diamond chain at low temperature
Tai-Min Cheng(成泰民), Mei-Lin Li(李美霖), Zhi-Rui Cheng(成智睿), Guo-Liang Yu(禹国梁), Shu-Sheng Sun(孙树生), Chong-Yuan Ge(葛崇员), and Xin-Xin Zhang(张新欣). Chin. Phys. B, 2021, 30(5): 057503.
[6] Pulse-gated mode of commercial superconducting nanowire single photon detectors
Fan Liu(刘帆), Mu-Sheng Jiang(江木生), Yi-Fei Lu(陆宜飞), Yang Wang(汪洋), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2021, 30(4): 040302.
[7] Transport property of inhomogeneous strained graphene
Bing-Lan Wu(吴冰兰), Qiang Wei(魏强), Zhi-Qiang Zhang(张智强), and Hua Jiang(江华). Chin. Phys. B, 2021, 30(3): 030504.
[8] An electromagnetic view of relay time in propagation of neural signals
Jing-Jing Xu(徐晶晶), San-Jin Xu(徐三津), Fan Wang(王帆), and Sheng-Yong Xu(许胜勇). Chin. Phys. B, 2021, 30(2): 028701.
[9] Mechanically tunable broadband terahertz modulator based on high-aligned Ni nanowire arrays
Wenfeng Xiang(相文峰), Xuan Liu(刘旋), Xiaowei Huang(黄晓炜), Qingli Zhou(周庆莉), Haizhong Guo(郭海中), and Songqing Zhao(赵嵩卿). Chin. Phys. B, 2021, 30(2): 026201.
[10] Exciton emissions of CdS nanowire array fabricated on Cd foil by the solvothermal method
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Ya-Juan Hao(郝亚娟), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(1): 016104.
[11] Flux-to-voltage characteristic simulation of superconducting nanowire interference device
Xing-Yu Zhang(张兴雨), Yong-Liang Wang(王永良), Chao-Lin Lv(吕超林), Li-Xing You(尤立星), Hao Li(李浩), Zhen Wang(王镇), Xiao-Ming Xie(谢晓明). Chin. Phys. B, 2020, 29(9): 098501.
[12] Asymmetric dynamic behaviors of magnetic domain wall in trapezoid-cross-section nanostrip
Xiao-Ping Ma(马晓萍), Hong-Guang Piao(朴红光), Lei Yang(杨磊), Dong-Hyun Kim, Chun-Yeol You, Liqing Pan(潘礼庆). Chin. Phys. B, 2020, 29(9): 097502.
[13] Novel compact and lightweight coaxial C-band transit-time oscillator
Xiao-Bo Deng(邓晓波), Jun-Tao He(贺军涛), Jun-Pu Ling(令钧溥), Bing-Fang Deng(邓秉方), Li-Li Song(宋莉莉), Fu-Xiang Yang(阳福香), Wei-Li Xu(徐伟力). Chin. Phys. B, 2020, 29(9): 095205.
[14] Scaling behavior of thermal conductivity in single-crystalline α-Fe2O3 nanowires
Qilang Wang(王啟浪), Yunyu Chen(陈允玉), Adili Aiyiti(阿地力·艾依提), Minrui Zheng(郑敏锐), Nianbei Li(李念北), Xiangfan Xu(徐象繁). Chin. Phys. B, 2020, 29(8): 084402.
[15] Ultra-low thermal conductivity of roughened silicon nanowires: Role of phonon-surface bond order imperfection scattering
Heng-Yu Yang(杨恒玉), Ya-Li Chen(陈亚利), Wu-Xing Zhou(周五星), Guo-Feng Xie(谢国锋), Ning Xu(徐宁). Chin. Phys. B, 2020, 29(8): 086502.
No Suggested Reading articles found!