Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 050305    DOI: 10.1088/1674-1056/22/5/050305
GENERAL Prev   Next  

Scheme for implementing economical phase-covariant quantum cloning machine of distant atomic qubits with single-photon interference

Zhou Yan-Hui (周彦辉), Wang Lei (王磊), Lai Xiao-Lei (赖晓磊)
Department of Basic Courses, Zhengzhou College of Science & Technology, Zhengzhou 450064, China
Abstract  By means of the cavity-assisted photon interference, a simple scheme is proposed to implement symmetric economical phase-covariant quantum cloning machine of two remote qubits, with each in a separate cavity. With our present scheme, a high-fidelity cloning machine is realized. Our scheme may be quite useful in terms of the distributed quantum information processing.
Keywords:  economical phase-covariant quantum cloning machine      distant atomic qubits      single-photon interference  
Received:  16 September 2012      Revised:  02 December 2012      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  03.67.Hk (Quantum communication)  
Corresponding Authors:  Zhou Yan-Hui     E-mail:  yanhuizhou@126.com

Cite this article: 

Zhou Yan-Hui (周彦辉), Wang Lei (王磊), Lai Xiao-Lei (赖晓磊) Scheme for implementing economical phase-covariant quantum cloning machine of distant atomic qubits with single-photon interference 2013 Chin. Phys. B 22 050305

[1] Wootters W K and Zurek W H 1982 Nature 299 802
[2] Yuen H P 1986 Phys. Lett. A 113 405
[3] Duan L M and Guo G C 1998 Phys. Lett. A 243 261
[4] Duan L M and Guo G C 1998 Phys. Rev. Lett. 80 4999
[5] Bružk V and Hillery M 1996 Phys. Rev. A 54 1844
[6] Navez P and Cerf N J 2003 Phys. Rev. A 68 032313
[7] BruβD, Cinchetti M, D'Ariano G M and Macchiavello C 2000 Phys. Rev. A 62 012302
[8] Fiurášek J Phys. Rev. A 2003 67 052314
[9] Zhang W H, Yu L B, Ye L and Dai J L 2007 Phys. Lett. A 360 726
[10] Zou X B, Dong Y L and Guo G C 2006 Phys. Lett. A 360 44
[11] Dai J L and Zhang W H 2009 Chin. Phys. B 18 426
[12] Song Q M and Ye L 2010 Chin. Phys. B 19 080309
[13] Yang R C, Li H C, Lin X, Huang Z P and Xie H 2008 Chin. Phys. B 17 967
[14] Fang B L, Song Q M and Ye L 2011 Phys. Rev. A 83 042309
[15] Feng M 2001 Phys. Rev. A 63 052306
[16] Kielpinski D, Monroe C and Wineland D J 2002 Nature 417 709
[17] Deng Z J, Feng M and Gao K L 2007 Phys. Rev. A 75 024302
[18] Fang B L, Wu T and Ye L 2012 Quantum Inf. Comput. 12 0334
[19] Deng Z J, Zhang X L, Wei H, Gao K L and Feng M 2007 Phys. Rev. A 76 044305
[20] Duan L M, Wang B and Kimble H J 2005 Phys. Rev. A 72 032333
[21] Lin X M, Zhou Z W, Ye M Y, Xiao Y F and Guo G C 2006 Phys. Rev. A 73 012323
[1] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[2] Performance analysis of quantum key distribution using polarized coherent-states in free-space channel
Zengte Zheng(郑增特), Ziyang Chen(陈子扬), Luyu Huang(黄露雨),Xiangyu Wang(王翔宇), and Song Yu(喻松). Chin. Phys. B, 2023, 32(3): 030306.
[3] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[4] Engineering topological state transfer in four-period Su-Schrieffer-Heeger chain
Xi-Xi Bao(包茜茜), Gang-Feng Guo(郭刚峰), and Lei Tan(谭磊). Chin. Phys. B, 2023, 32(2): 020301.
[5] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[6] Novel traveling quantum anonymous voting scheme via GHZ states
Wenhao Zhao(赵文浩) and Min Jiang(姜敏). Chin. Phys. B, 2023, 32(2): 020303.
[7] Realization of the iSWAP-like gate among the superconducting qutrits
Peng Xu(许鹏), Ran Zhang(张然), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(2): 020306.
[8] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[9] Tolerance-enhanced SU(1,1) interferometers using asymmetric gain
Jian-Dong Zhang(张建东) and Shuai Wang(王帅). Chin. Phys. B, 2023, 32(1): 010306.
[10] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[11] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[12] Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides
Ye-Qi Zhang(张业奇), Xiao-Ting Ding(丁潇婷), Jiao Sun(孙娇), and Tian-Hu Wang(王天虎). Chin. Phys. B, 2022, 31(12): 120305.
[13] Experimental demonstration of a fast calibration method for integrated photonic circuits with cascaded phase shifters
Junqin Cao(曹君勤), Zhixin Chen(陈志歆), Yaxin Wang(王亚新), Tianfeng Feng(冯田峰), Zhihao Li(李志浩), Zeyu Xing(邢泽宇), Huashan Li(李华山), and Xiaoqi Zhou(周晓祺). Chin. Phys. B, 2022, 31(11): 114204.
[14] Fringe visibility and correlation in Mach-Zehnder interferometer with an asymmetric beam splitter
Yan-Jun Liu(刘彦军), Mei-Ya Wang(王美亚), Zhong-Cheng Xiang(相忠诚), and Hai-Bin Wu(吴海滨). Chin. Phys. B, 2022, 31(11): 110305.
[15] Passively stabilized single-photon interferometer
Hai-Long Liu(刘海龙), Min-Jie Wang(王敏杰), Jia-Xin Bao(暴佳鑫), Chao Liu(刘超), Ya Li(李雅), Shu-Jing Li(李淑静), and Hai Wang(王海). Chin. Phys. B, 2022, 31(11): 110306.
No Suggested Reading articles found!