Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 050204    DOI: 10.1088/1674-1056/22/5/050204
GENERAL Prev   Next  

Exact solutions of (3+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq equations

Liu Pinga, Li Zi-Liangb
a College of Electron and Information Engineering, University of Electronic Scienceand Technology of China Zhongshan Institute, Zhongshan 528402, China;
b Physical Oceanography Laboratory, College of Physical and Environment Oceanography, Ocean University of China, Qingdao 266100, China
Abstract  The symmetries and the exact solutions of the (3+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq (INHB) equations, which describe the atmospheric gravity waves, are studied in this paper. The calculation on symmetry shows that the equations are invariant under the Galilean transformations, the scaling transformations, and the space-time translations. Three types of symmetry reduction equations and similar solutions for the (3+1)-dimensional INHB equations are proposed. Traveling and non-traveling wave solutions of the INHB equations are demonstrated. The evolutions of the wind velocities in latitudinal, longitudinal, and vertical directions with space-time are demonstrated. The periodicity and the atmosphere viscosity are displayed in the (3+1)-dimensional INHB system.
Keywords:  (3+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq equations      atmospheric gravity waves      symmetries      exact solutions  
Received:  25 August 2012      Revised:  15 November 2012      Accepted manuscript online: 
PACS:  02.30.Jr (Partial differential equations)  
  02.20.Hj (Classical groups)  
  02.20.Sv (Lie algebras of Lie groups)  
  92.60.hh (Acoustic gravity waves, tides, and compressional waves)  
Fund: Projet supported by the Natural Science Foundation of Guangdong Province, China (Grant Nos. 10452840301004616 and S2011040000403), the National Natural Science Foundation of China (Grant No. 41176005), and the Science and Technology Project Foundation of Zhongshan, China (Grnat No. 20123A326).
Corresponding Authors:  Li Zi-Liang     E-mail:  liuping49@126.com

Cite this article: 

Liu Ping, Li Zi-Liang Exact solutions of (3+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq equations 2013 Chin. Phys. B 22 050204

[1] Li Z L 2008 J. Phys. A: Math. Theor. 41 145206
[2] Li Z L 2009 Chin. Phys. B 18 4074
[3] Qing J R, Chen S M, Li D W, Liang B and Liu B W 2012 Chin. Phys. B 21 089401
[4] Liu P, Li Z L and Lou S Y 2010 Applied Mathematics and Mechanics 31 1383
[5] McWilliams J C 2006 Fundamentals of Geophysical Fluid Dynamics (London: Cambridge University Press)
[6] Olver P 1986 Applications of Lie Group to Differential Equations (New York: Spring-Verlag)
[7] Bluman G W and Kumei S 1989 Symmetries and Differential Equations (New York: Spring-Verlag)
[8] Wang X X, Sun X T, Zhang M L, Han Y L and Jia L Q 2012 Chin. Phys. B 21 050201
[9] Wang X Z, Fu H and Fu J L 2012 Chin. Phys. B 21 040201
[10] Liu P and Fu P K 2011 Chin. Phys. B 20 090203
[11] Liu P and Lou S Y 2009 Commun. Theor. Phys. 51 27
[1] Space symmetry of effective physical constants for biaxial crystals
Fuan Liu(刘孚安), Zeliang Gao(高泽亮), XinYin(尹鑫), and Xutang Tao(陶绪堂). Chin. Phys. B, 2021, 30(2): 026104.
[2] Exact scattering states in one-dimensional Hermitian and non-Hermitian potentials
Ruo-Lin Chai(柴若霖), Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(9): 090301.
[3] Exact solution of the (1+2)-dimensional generalized Kemmer oscillator in the cosmic string background with the magnetic field
Yi Yang(杨毅), Shao-Hong Cai(蔡绍洪), Zheng-Wen Long(隆正文), Hao Chen(陈浩), Chao-Yun Long(龙超云). Chin. Phys. B, 2020, 29(7): 070302.
[4] Unified approach to various quantum Rabi models witharbitrary parameters
Xiao-Fei Dong(董晓菲), You-Fei Xie(谢幼飞), Qing-Hu Chen(陈庆虎). Chin. Phys. B, 2020, 29(2): 020302.
[5] Density wave and topological superconductivity in the magic-angle-twisted bilayer-graphene
Ming Zhang(张铭), Yu Zhang(张渝), Chen Lu(卢晨), Wei-Qiang Chen(陈伟强), and Fan Yang(杨帆). Chin. Phys. B, 2020, 29(12): 127102.
[6] Bright and dark soliton solutions for some nonlinear fractional differential equations
Ozkan Guner, Ahmet Bekir. Chin. Phys. B, 2016, 25(3): 030203.
[7] Application of asymptotic iteration method to a deformed well problem
Hakan Ciftci, H F Kisoglu. Chin. Phys. B, 2016, 25(3): 030201.
[8] Exact solutions and residual symmetries of the Ablowitz-Kaup-Newell-Segur system
Liu Ping, Zeng Bao-Qing, Yang Jian-Rong, Ren Bo. Chin. Phys. B, 2015, 24(1): 010202.
[9] Exact solution of Dirac equation for Scarf potential with new tensor coupling potential for spin and pseudospin symmetries using Romanovski polynomials
A. Suparmi, C. Cari, U. A. Deta. Chin. Phys. B, 2014, 23(9): 090304.
[10] Fusion, fission, and annihilation of complex waves for the (2+1)-dimensional generalized Calogero-Bogoyavlenskii-Schiff system
Zhu Wei-Ting, Ma Song-Hua, Fang Jian-Ping, Ma Zheng-Yi, Zhu Hai-Ping. Chin. Phys. B, 2014, 23(6): 060505.
[11] Bound state solutions of the Dirac equation with the Deng–Fan potential including a Coulomb tensor interaction
S. Ortakaya, H. Hassanabadi, B. H. Yazarloo. Chin. Phys. B, 2014, 23(3): 030306.
[12] Relativistic symmetries of Deng–Fan and Eckart potentials with Coulomb-like and Yukawa-like tensor interactions
Akpan N. Ikot, S. Zarrinkamar, B. H. Yazarloo, H. Hassanabadi. Chin. Phys. B, 2014, 23(10): 100306.
[13] Oscillating multidromion excitations in higher-dimensional nonlinear lattice with intersite and external on-site potentials using symbolic computation
B. Srividya, L. Kavitha, R. Ravichandran, D. Gopi. Chin. Phys. B, 2014, 23(1): 010307.
[14] Symmetries and conservation laws of one Blaszak–Marciniak four-field lattice equation
Wang Xin, Chen Yong, Dong Zhong-Zhou . Chin. Phys. B, 2014, 23(1): 010201.
[15] New exact solutions of (3+1)-dimensional Jimbo-Miwa system
Chen Yuan-Ming, Ma Song-Hua, Ma Zheng-Yi. Chin. Phys. B, 2013, 22(5): 050510.
No Suggested Reading articles found!