Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 050203    DOI: 10.1088/1674-1056/22/5/050203
GENERAL Prev   Next  

Painlevé integrability of generalized fifth-order KdV equation with variable coefficients: Exact solutions and their interactions

Xu Gui-Qiong (徐桂琼)
Department of Information Management, College of Management, Shanghai University, Shanghai 200444, China
Abstract  By means of singularity structure analysis, the integrability of a generalized fifth-order KdV equation is investigated. It is proven that this equation passes the Painlevé test for integrability only for three distinct cases. Moreover, the multi-soliton solutions are presented for this equation under three sets of integrable conditions. Finally, by selecting appropriate parameters, we analyze the evolution of two solitons, which is especially interesting as it may describe the overtaking and the head-on collisions of solitary waves of different shapes and different types.
Keywords:  generalized fifth-order KdV equation      Painlevé      integrability      soliton solution      symbolic computation  
Received:  21 November 2012      Revised:  05 January 2013      Accepted manuscript online: 
PACS:  02.30.Ik (Integrable systems)  
  05.45.Yv (Solitons)  
  02.30.Jr (Partial differential equations)  
Fund: Projects supported by the National Natural Science Foundation of China (Grant Nos. 11201290 and 71103118).
Corresponding Authors:  Xu Gui-Qiong     E-mail:  xugq@staff.shu.edu.cn

Cite this article: 

Xu Gui-Qiong (徐桂琼) Painlevé integrability of generalized fifth-order KdV equation with variable coefficients: Exact solutions and their interactions 2013 Chin. Phys. B 22 050203

[1] Ablowitz M J and Clarkson P A 1991 Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge: Cambridge University Press)
[2] Wadati M, Sanuki H and Konno K 1975 Prog. Theor. Phys. 53 419
[3] Weiss J, Tabor M and Carnevale G 1983 J. Math. Phys. 24 522
[4] Hirota R 1971 Phys. Rev. Lett. 27 1192
[5] Zamir M 2000 The Physics of Pulsatile Flow (New York: Springer-Verlag)
[6] Yan Z Y and Hang C 2009 Phys. Rev. A 80 063626
[7] Yang Z, Ma S H and Fang J P 2011 Chin. Phys. B 20 040301
[8] Yan Z Y and Jiang D M 2012 J. Math. Analy. Appl. 395 542
[9] Dai H H and Huo Y 2002 Wave Motions. 35 55
[10] Zhang Y, Li J B and Lv Y N 2008 Annals of Physics 323 3059
[11] Zhang Y, Wei W W, Cheng T F and Song Y 2011 Chin. Phys. B 20 110204
[12] Yang Y Q and Chen Y 2011 Chin. Phys. B 20 1674
[13] Fan E G 2011 Phys. Lett. A 375 493
[14] Serkin V N and Hasegawa A 2000 Phys. Rev. Lett. 85 4502
[15] Xu G Q 2009 Comput. Phys. Commun. 180 1137
[16] Zhang H P, Li B and Chen Y 2010 Chin. Phys. B 19 060302
[17] Wang H and Li B 2011 Chin. Phys. B 20 040203
[18] Zheng C L and Li Y 2012 Chin. Phys. B 21 070305
[19] Zhao D, Zhang Y J, Lou W W and Luo H G 2011 J. Math. Phys. 52 043502
[20] Yu X, Gao Y T, Sun Z Y and Liu Y 2010 Phys. Scr. 81 045402
[21] Yu X, Gao Y T, Sun Z Y and Liu Y 2011 Commun. Theor. Phys. 55 629
[22] Chen B and Xie Y C 2005 Chao. Soliton. Fract. 23 243
[23] Zhang Y X, Zhang H Q, Li J, Xu T, Zhang C Y and Tian B 2008 Commun. Theor. Phys. 49 833
[24] Wazwaz A M 2010 Phys. Scr. 82 035009
[25] Hereman W, Göktas Ü, Colagrosso M D and Miller A 1998 Comput. Phys. Commun. 115 428
[26] Lou S Y 1998 Phys. Rev. Lett. 80 5027
[27] Sakovich S Yu and Tsuchida T 2000 J. Phys. A: Math. Gen. 33 7217
[28] Baldwin D and Hereman W 2006 J. Nonlin. Math. Phys. 13 90
[29] Lou S Y, Tong B, Hu H C and Tang X Y 2006 J. Phys. A: Math. Gen. 39 513
[30] Xu G Q 2006 Phys. Rev. E 74 027602
[31] Xu G Q 2008 Comput. Phys. Commun. 178 505
[32] Ding C Y, Zhao D and Luo H G 2012 J. Phys. A: Math. Theor. 45 115203
[33] Nakamura A 1979 J. Phys. Soc. Jpn. 47 1701
[34] Hu X B and Clarkson P A 1995 J. Phys. A: Math. Gen. 28 5009
[35] Gilson C R, Hu X B, Ma W X and Tam H W 2003 Phys. D 175 177
[36] Zhang D J and Chen D Y 2004 J. Phys. A: Math. Gen. 37 851
[37] Yao Y Q, Chen D Y and Zhang D J 2008 Phys. Lett. A 372 2017
[38] Chen S T, Zhu X M, Li Q and Chen D Y 2011 Chin. Phys. Lett. 28 060202
[39] Wu J P, Geng X G and Zhang X L 2009 Chin. Phys. Lett. 26 020202
[40] Fan E G and Hon Y C 2008 Phys. Rev. E 78 036607
[41] Fan E G and Chow K K 2011 J. Math. Phys. 52 023504
[42] Xu G Q and Li Z B 2005 Appl. Math. Comput. 169 1364
[1] Riemann--Hilbert approach of the complex Sharma—Tasso—Olver equation and its N-soliton solutions
Sha Li(李莎), Tiecheng Xia(夏铁成), and Hanyu Wei(魏含玉). Chin. Phys. B, 2023, 32(4): 040203.
[2] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[3] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[4] Nonlinear dynamical wave structures of Zoomeron equation for population models
Ahmet Bekir and Emad H M Zahran. Chin. Phys. B, 2022, 31(6): 060401.
[5] A nonlocal Boussinesq equation: Multiple-soliton solutions and symmetry analysis
Xi-zhong Liu(刘希忠) and Jun Yu(俞军). Chin. Phys. B, 2022, 31(5): 050201.
[6] Soliton, breather, and rogue wave solutions for solving the nonlinear Schrödinger equation using a deep learning method with physical constraints
Jun-Cai Pu(蒲俊才), Jun Li(李军), and Yong Chen(陈勇). Chin. Phys. B, 2021, 30(6): 060202.
[7] Soliton interactions and asymptotic state analysis in a discrete nonlocal nonlinear self-dual network equation of reverse-space type
Cui-Lian Yuan(袁翠连) and Xiao-Yong Wen(闻小永). Chin. Phys. B, 2021, 30(3): 030201.
[8] Collapse arrest in the space-fractional Schrödinger equation with an optical lattice
Manna Chen(陈曼娜), Hongcheng Wang(王红成), Hai Ye(叶海), Xiaoyuan Huang(黄晓园), Ye Liu(刘晔), Sumei Hu(胡素梅), and Wei Hu(胡巍). Chin. Phys. B, 2021, 30(10): 104206.
[9] Stable soliton propagation in a coupled (2+1) dimensional Ginzburg-Landau system
Li-Li Wang(王丽丽), Wen-Jun Liu(刘文军). Chin. Phys. B, 2020, 29(7): 070502.
[10] Four-soliton solution and soliton interactions of the generalized coupled nonlinear Schrödinger equation
Li-Jun Song(宋丽军), Xiao-Ya Xu(徐晓雅), Yan Wang(王艳). Chin. Phys. B, 2020, 29(6): 064211.
[11] Localized characteristics of lump and interaction solutions to two extended Jimbo-Miwa equations
Yu-Hang Yin(尹宇航), Si-Jia Chen(陈思佳), and Xing Lü(吕兴). Chin. Phys. B, 2020, 29(12): 120502.
[12] Painlevé integrability of the supersymmetric Ito equation
Feng-Jie Cen(岑锋杰), Yan-Dan Zhao(赵燕丹), Shuang-Yun Fang(房霜韵), Huan Meng(孟欢), Jun Yu(俞军). Chin. Phys. B, 2019, 28(9): 090201.
[13] Lump-type solutions of a generalized Kadomtsev-Petviashvili equation in (3+1)-dimensions
Xue-Ping Cheng(程雪苹), Wen-Xiu Ma(马文秀), Yun-Qing Yang(杨云青). Chin. Phys. B, 2019, 28(10): 100203.
[14] Multi-soliton solutions for the coupled modified nonlinear Schrödinger equations via Riemann-Hilbert approach
Zhou-Zheng Kang(康周正), Tie-Cheng Xia(夏铁成), Xi Ma(马茜). Chin. Phys. B, 2018, 27(7): 070201.
[15] Integrability classification and exact solutions to generalized variable-coefficient nonlinear evolution equation
Han-Ze Liu(刘汉泽), Li-Xiang Zhang(张丽香). Chin. Phys. B, 2018, 27(4): 040202.
No Suggested Reading articles found!