Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(4): 047101    DOI: 10.1088/1674-1056/22/4/047101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Symmetry and size effects on energy and entanglement of an exciton in coupled quantum dots

Shen Man (沈曼)a, Bai Yan-Kui (白彦魁)a, An Xing-Tao (安兴涛)b, Liu Jian-Jun (刘建军)a c
a College of Physics Science & Information Engineering and Hebei Advanced Thin Film Laboratory, Hebei Normal University, Shijiazhuang 050024, China;
b School of Sciences, Hebei University of Science and Technology, Shijiazhuang, 050018, China;
c Physics Department, Shijiazhuang University, Shijiazhuang 050035, China
Abstract  We study theoretically the essential properties of an exciton in vertically coupled Gaussian quantum dots in the presence of an external magnetic field. The ground state energy of a heavy-hole exciton is split into four energy levels due to the Zeeman effect. For the symmetrical system, the entanglement entropy of the exciton state can reach a value of 1. However, for a system with broken symmetry, it is close to zero. Our results are in good agreement with previous studies.
Keywords:  exciton      coupled Gaussian quantum dot      symmetry      entanglement entropy  
Received:  06 August 2012      Revised:  16 October 2012      Accepted manuscript online: 
PACS:  71.35.Ji (Excitons in magnetic fields; magnetoexcitons)  
  73.21.La (Quantum dots)  
  73.22.Gk (Broken symmetry phases)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61176089 and 10905016) and the Natural Science Foundation of Hebei Province, China (Grant Nos. A2011205092 and A2011208010).
Corresponding Authors:  Liu Jian-Jun     E-mail:  liujj@mail.hebtu.edu.cn

Cite this article: 

Shen Man (沈曼), Bai Yan-Kui (白彦魁), An Xing-Tao (安兴涛), Liu Jian-Jun (刘建军) Symmetry and size effects on energy and entanglement of an exciton in coupled quantum dots 2013 Chin. Phys. B 22 047101

[1] Fält S, Atatüre M, Türeci H E, Zhao Y, Badolato A and Imamoglu A 2008 Phys. Rev. Lett. 100 106401
[2] Hewageegana P and Apalkov V 2009 Phys. Rev. B 79 115418
[3] Kolli A, Lovett B W, Benjamin S C and Stace T M 2009 Phys. Rev. B 79 035315
[4] Li J S , Li Z B and Yao D X 2012 Chin. Phys. B 21 017302
[5] Ortner G, Yugova I, Baldassarri H, von Högersthal G, Larionov A, Kurtze H, Yakovlev D R, Bayer M, Fafard S, Wasilewski Z, Hawrylak P, Lyanda-Geller Y B, Reinecke T L, Babinski A, Potemski M, Timofeev V B and Forchel A 2005 Phys. Rev. B 71 125335
[6] Cao C, Wang C and Zhang R 2012 Chin. Phys. B. 21 110305
[7] Zhang H, Wang X, Zhao J F and Liu J J 2011 Chin. Phys. B 20 127301
[8] Imamoglu A, Awschalom D D, Burkard G, DiVincenzo D P, Loss D, Sherwin M and Small A 1999 Phys. Rev. Lett. 83 4204
[9] DiVincenzo D P, Bacon D, Kempe J, Burkard G and Whaley K B 2000 Nature 408 339
[10] Loss D and Sukhorukov E V 2000 Phys. Rev. Lett. 84 1035
[11] Hawrylak P, Fafard S and Wasilewski Z R 1999 Condens. Matter News 7 16
[12] Bayer M, Hawrylak P, Hinzer K, Fafard S, Korkusinski M, Wasilewski Z R, Stern O and Forchel A 2001 Science 291 451
[13] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
[14] Korkusinski M, Hawrylak P, Bayer M, Ortner G, Forchel A, Fafard S and Wasilewski Z 2002 Physica E 13 610
[15] Bester G, Shumway J and Zunger A 2004 Phys. Rev. Lett. 93 047401
[16] Bester G, Zunger A and Shumway J 2005 Phys. Rev. B 71 075325
[17] Ortner G, Bayer M, Lyanda-Geller Y, Reinecke T L, Kress A, Reithmaier J P and Forchel A 2005 Phys. Rev. Lett. 94 157401
[18] Stinaff E A, Scheibner M, Bracker A S, Ponomarev I V, Korenev V L, Ware M E, Doty M F, Reinecke T L and Gammon D 2006 Science 311 636
[19] Fafard S, Spanner M, McCaffrey J P and Wasilewski Z R 2000 Appl. Phys. Lett. 76 2268
[20] Zhu J L, Chu W D, Dai Z S and Xu D 2005 Phys. Rev. B 72 165346
[21] Colombelli R, Piazza V, Badolato A, Lazzarino M, Beltram F, Schoenfeld W and Petroff P 2000 Appl. Phys. Lett. 76 1146
[22] Bednarek S, Szafran B, Chwiej T and Adamowski J 2003 Phys. Rev. B 68 045328
[23] Shen M and Liu J J 2011 J. Appl. Phys. 109 094313
[24] Bayer M, Kuther A, Forchel A, Gorbunov A, Timofeev V B, Schäfer F, Reithmaier J P, Reinecke T L and Walck S N 1999 Phys. Rev. Lett. 82 1748
[1] Conformable fractional heat equation with fractional translation symmetry in both time and space
W S Chung, A Gungor, J Kříž, B C Lütfüoǧlu, and H Hassanabadi. Chin. Phys. B, 2023, 32(4): 040202.
[2] An optimized infinite time-evolving block decimation algorithm for lattice systems
Junjun Xu(许军军). Chin. Phys. B, 2023, 32(4): 040303.
[3] Lie symmetry analysis and invariant solutions for the (3+1)-dimensional Virasoro integrable model
Hengchun Hu(胡恒春) and Yaqi Li(李雅琦). Chin. Phys. B, 2023, 32(4): 040503.
[4] Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(4): 047104.
[5] Chiral symmetry protected topological nodal superconducting phase and Majorana Fermi arc
Mei-Ling Lu(卢美玲), Yao Wang(王瑶), He-Zhi Zhang(张鹤之), Hao-Lin Chen(陈昊林), Tian-Yuan Cui(崔天元), and Xi Luo(罗熙). Chin. Phys. B, 2023, 32(2): 027301.
[6] Site selective 5f electronic correlations in β-uranium
Ruizhi Qiu(邱睿智), Liuhua Xie(谢刘桦), and Li Huang(黄理). Chin. Phys. B, 2023, 32(1): 017101.
[7] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[8] Evolution of polarization singularities accompanied by avoided crossing in plasmonic system
Yi-Xiao Peng(彭一啸), Qian-Ju Song(宋前举), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2023, 32(1): 014201.
[9] Optical second-harmonic generation of Janus MoSSe monolayer
Ce Bian(边策), Jianwei Shi(史建伟), Xinfeng Liu(刘新风), Yang Yang(杨洋), Haitao Yang(杨海涛), and Hongjun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097304.
[10] Conservation of the particle-hole symmetry in the pseudogap state in optimally-doped Bi2Sr2CuO6+δ superconductor
Hongtao Yan(闫宏涛), Qiang Gao(高强), Chunyao Song(宋春尧), Chaohui Yin(殷超辉), Yiwen Chen(陈逸雯), Fengfeng Zhang(张丰丰), Feng Yang(杨峰), Shenjin Zhang(张申金), Qinjun Peng(彭钦军), Guodong Liu(刘国东), Lin Zhao(赵林), Zuyan Xu(许祖彦), and X. J. Zhou(周兴江). Chin. Phys. B, 2022, 31(8): 087401.
[11] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[12] Parity-time symmetric acoustic system constructed by piezoelectric composite plates with active external circuits
Yang Zhou(周扬), Zhang-Zhao Yang(杨彰昭), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔). Chin. Phys. B, 2022, 31(6): 064304.
[13] Neutron activation cross section data library
Xiao-Long Huang(黄小龙), Zhi-Gang Ge(葛智刚), Yong-Li Jin(金永利), Hai-Cheng Wu(吴海成), Xi Tao(陶曦),Ji-Min Wang(王记民), Li-Le Liu(刘丽乐), Yue Zhang(张玥), and Xiao-Fei Wu(吴小飞). Chin. Phys. B, 2022, 31(6): 060102.
[14] Local sum uncertainty relations for angular momentum operators of bipartite permutation symmetric systems
I Reena, H S Karthik, J Prabhu Tej, Sudha, A R Usha Devi, and A K Rajagopal. Chin. Phys. B, 2022, 31(6): 060301.
[15] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
No Suggested Reading articles found!