Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(4): 044209    DOI: 10.1088/1674-1056/22/4/044209
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Giant enhancement of a Fano-type resonance in a gain-assisted silicon slab array

Dong Zheng-Gao (董正高), Li Jia-Qi (李家奇), Shao Jian (邵健), Yu Xiao-Qiang (喻小强), Wang Yu-Kun (王昱坤), Zhai Ya (翟亚)
Physics Department, Southeast University, Nanjing 211189, China
Abstract  Giant resonance enhancement is demonstrated to be due to the Fano interference in a grating waveguide composed of gain-assisted silicon slabs. The Fano mode is characterized by its ultra-narrow asymmetric spectrum, different from that of a pure electric or magnetic dipole. The simulation indicates that a sharp Fano-interfered lineshape is responsible for the giant resonance enhancement featuring the small-gain requirements.
Keywords:  giant resonance      photonic materials      gain      amplification  
Received:  21 August 2012      Revised:  23 October 2012      Accepted manuscript online: 
PACS:  42.70.Qs (Photonic bandgap materials)  
  42.60.Lh (Efficiency, stability, gain, and other operational parameters)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10904012, 11004026, 11004030, 11074034, and 11174051) and the National Basic Research Program of China (Grant No. 2010CB923404).
Corresponding Authors:  Dong Zheng-Gao     E-mail:  zgdong@seu.edu.cn

Cite this article: 

Dong Zheng-Gao (董正高), Li Jia-Qi (李家奇), Shao Jian (邵健), Yu Xiao-Qiang (喻小强), Wang Yu-Kun (王昱坤), Zhai Ya (翟亚) Giant enhancement of a Fano-type resonance in a gain-assisted silicon slab array 2013 Chin. Phys. B 22 044209

[1] Painter O, Lee R K, Scherer A, Yariv A, O'Brien J D, Dapkus P D and Kim I 1999 Science 284 1819
[2] Johnson J C, Choi H J, Knutsen K P, Schaller R D, Yang P and Saykally R J 2002 Nature 1 106
[3] Yu K, Lakhani A and Wu M C 2010 Opt. Express 18 8790
[4] Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G and Zhang X 2009 Nature 461 629
[5] Bergman D J and Stockman M I 2003 Phys. Rev. Lett. 90 027402
[6] Zheludev N I, Prosvirnin S L, Papasimakis N and Fedotov V A 2008 Nat. Photon. 2 351
[7] Stockman M I 2010 J. Opt. 12 024004
[8] Plum E, Fedotov V A, Kuo P, Tsai D P and Zheludev N I 2009 Opt. Express 17 8548
[9] Fedotov V A, Rose M, Prosvirnin S L, Papasimakis N and Zheludev N I 2007 Phys. Rev. Lett. 99 147401
[10] Fano U 1961 Phys. Rev. 124 1866
[11] Luk'yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H and Chong C T 2010 Nat. Mater. 9 707
[12] Miroshnichenko A E, Flach S and Kivshar Y S 2010 Rev. Mod. Phys. 82 2257
[13] Liu H, Li G X, Li K F, Chen S M, Zhu S N, Chan C T and Cheah K W 2011 Phys. Rev. B 84 235437
[14] Bohren C and Huffman D R 1983 Absorption and Scattering of Light by Small Particles (New York: Wiley)
[15] Zang Y Z, He M X, Gu J Q, Tian Z and Han J G 2012 Chin. Phys. B 21 117802
[16] Zhao Q, Kang L, Du B, Zhao H, Xie Q, Huang X, Li B, Zhou J and Li L 2008 Phys. Rev. Lett. 101 027402
[17] Yang Y M, Wang J F, Xia S, Bai P, Li Z, Wang J, Xu Z and Qu S B 2011 Chin. Phys. B 20 014101
[18] Fan J, Sun G Y and Zhu W R 2011 Chin. Phys. B 20 114101
[19] Dong Z G, Liu H, Li T, Zhu Z H, Wang S M, Cao J X, Zhu S N and Zhang X 2010 Appl. Phys. Lett. 96 044104
[20] Wang F M, Liu H, Li T, Dong Z G, Zhu S N and Zhang X 2007 Phys. Rev. E 75 016604
[21] Liu H, Genov D A, Wu D M, Liu Y M, Liu Z W, Sun C, Zhu S N and Zhang X 2007 Phys. Rev. B 76 073101
[22] Fan S and Joannopoulos J D 2002 Phys. Rev. B 65 235112
[23] Pradarutti B, Torosyan G, Theuer M and Beigang R 2010 Appl. Phys. Lett. 97 244103
[24] Yariv A 1984 Optical Waves in Crystals: Propagation and Control of Laser Radiation (New York: Wiley)
[25] Zhang H F, Cao D, Tao F, Yang X H, Wang Y, Yan X N and Bai L H 2010 Chin. Phys. B 19 027301
[26] Dong Z G, Zhu S N and Liu H 2006 Chin. Phys. 15 1772
[27] Chua S L, Chong Y, Stone A D, Soljacic M and Bravo-Abad J 2011 Opt. Express 19 1539
[1] Tolerance-enhanced SU(1,1) interferometers using asymmetric gain
Jian-Dong Zhang(张建东) and Shuai Wang(王帅). Chin. Phys. B, 2023, 32(1): 010306.
[2] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[3] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[4] Parity-time symmetric acoustic system constructed by piezoelectric composite plates with active external circuits
Yang Zhou(周扬), Zhang-Zhao Yang(杨彰昭), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔). Chin. Phys. B, 2022, 31(6): 064304.
[5] Quantum algorithm for neighborhood preserving embedding
Shi-Jie Pan(潘世杰), Lin-Chun Wan(万林春), Hai-Ling Liu(刘海玲), Yu-Sen Wu(吴宇森), Su-Juan Qin(秦素娟), Qiao-Yan Wen(温巧燕), and Fei Gao(高飞). Chin. Phys. B, 2022, 31(6): 060304.
[6] Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
Ji Wang(王佶), Yanqing Zheng(郑燕青), and Yunlin Chen(陈云琳). Chin. Phys. B, 2022, 31(5): 054213.
[7] Impact of symmetric gate-recess length on the DC and RF characteristics of InP HEMTs
Ruize Feng(封瑞泽), Bo Wang(王博), Shurui Cao(曹书睿), Tong Liu(刘桐), Yongbo Su(苏永波), Wuchang Ding(丁武昌), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018505.
[8] Characteristic mode analysis of wideband high-gain and low-profile metasurface antenna
Kun Gao(高坤), Xiang-Yu Cao(曹祥玉), Jun Gao(高军), Huan-Huan Yang(杨欢欢), and Jiang-Feng Han(韩江枫). Chin. Phys. B, 2021, 30(6): 064101.
[9] Graphene-tuned threshold gain to achieve optical pulling force on microparticle
Hong-Li Chen(陈鸿莉) and Yang Huang(黄杨). Chin. Phys. B, 2021, 30(6): 064205.
[10] An easily-prepared impedance matched Josephson parametric amplifier
Ya-Peng Lu(卢亚鹏), Quan Zuo(左权), Jia-Zheng Pan(潘佳政), Jun-Liang Jiang(江俊良), Xing-Yu Wei(魏兴雨), Zi-Shuo Li(李子硕), Wen-Qu Xu(许问渠), Kai-Xuan Zhang(张凯旋), Ting-Ting Guo(郭婷婷), Shuo Wang(王硕), Chun-Hai Cao(曹春海), Wei-Wei Xu(许伟伟), Guo-Zhu Sun(孙国柱), and Pei-Heng Wu(吴培亨). Chin. Phys. B, 2021, 30(6): 068504.
[11] Brillouin gain spectrum characterization in Ge-doped large-mode-area fibers
Xia-Xia Niu(牛夏夏), Yi-Feng Yang(杨依枫), Zhao Quan(全昭), Chun-Lei Yu(于春雷), Qin-Ling Zhou(周秦岭), Hui Shen(沈辉), Bing He(何兵), and Jun Zhou(周军). Chin. Phys. B, 2021, 30(12): 124203.
[12] A 61-mJ, 1-kHz cryogenic Yb: YAG laser amplifier
Huijun He(何会军), Jun Yu(余军), Wentao Zhu(朱文涛), Qingdian Lin(林庆典), Xiaoyang Guo(郭晓杨), Cangtao Zhou(周沧涛), and Shuangchen Ruan(阮双琛). Chin. Phys. B, 2021, 30(12): 124206.
[13] Suppression of persistent photoconductivity in high gain Ga2O3 Schottky photodetectors
Haitao Zhou(周海涛), Lujia Cong(丛璐佳), Jiangang Ma(马剑钢), Bingsheng Li(李炳生), Haiyang Xu(徐海洋), and Yichun Liu(刘益春). Chin. Phys. B, 2021, 30(12): 126104.
[14] Phase matched scanning optical parametric chirped pulse amplification based on pump beam deflection
Rong Ye(叶荣), Huining Dong(董会宁), Xianyun Wu(吴显云), and Xiang Gao(高翔). Chin. Phys. B, 2021, 30(10): 104209.
[15] Multibeam Raman amplification of a finite-duration seed in a short distance
Y G Chen(陈雨谷), Y Chen(陈勇), S X Xie(谢善秀), N Peng(彭娜), J Q Yu(余金清), and C Z Xiao(肖成卓). Chin. Phys. B, 2021, 30(10): 105202.
No Suggested Reading articles found!