Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(2): 026103    DOI: 10.1088/1674-1056/22/2/026103
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

An AlGaN/GaN HEMT with enhanced breakdown and near-zero breakdown voltage temperature coefficient

Xie Gang (谢刚)a b, Tang Cen (汤岑)a, Wang Tao (汪涛)a, Guo Qing (郭清)a, Zhang Bo (张波)c, Sheng Kuang (盛况)a, Wai Tung Ngb
a College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China;
b The Edward S. Rogers Sr. Electrical and Computer Engineering Department, University of Toronto, Toronto, Ontario, Canada, M5S 1A1;
c State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  An AlGaN/GaN high-electron mobility transistor (HEMT) with a novel source-connected air-bridge field plate (AFP) is experimentally verified. The device features a metal field plate that jumps from the source over the gate region and lands between the gate and drain. When compared to a similar size HEMT device with conventional field plate (CFP) structure, the AFP not only minimizes the parasitic gate to source capacitance, but also exhibits higher OFF-state breakdown voltage and one order of magnitude lower drain leakage current. In a device with a gate to drain distance of 6 μm and a gate length of 0.8 μm, three times higher forward blocking voltage of 375 V was obtained at VGS=-5 V. In contrast, a similar sized HEMT with CFP can only achieve a breakdown voltage no higher than 125 V using this process, regardless of device dimensions. Moreover, a temperature coefficient of 0 V/K for the breakdown voltage is observed. However, devices without field plate (no FP) and with optimized conventional field plate (CFP) exhibit breakdown voltage temperature coefficients of -0.113 V/K and -0.065 V/K, respectively.
Keywords:  AlGaN/GaN high-electron mobility transistor      air-bridge field plate      breakdown voltage      breakdown voltage temperature coefficient  
Received:  16 August 2012      Revised:  10 September 2012      Accepted manuscript online: 
PACS:  61.72.uj (III-V and II-VI semiconductors)  
  71.20.N  
  51.50.+v (Electrical properties)  
Fund: Project supported by the Delta Science & Technology Educational Development Program (Grant No. DREK2010001) and the Zhejiang Provincial Natural Science Foundation of China for Distinguished Young Scholars (Grant No. R1100468).
Corresponding Authors:  Sheng Kuang     E-mail:  shengk@zju.edu.cn

Cite this article: 

Xie Gang (谢刚), Tang Cen (汤岑), Wang Tao (汪涛), Guo Qing (郭清), Zhang Bo (张波), Sheng Kuang (盛况), Wai Tung Ng An AlGaN/GaN HEMT with enhanced breakdown and near-zero breakdown voltage temperature coefficient 2013 Chin. Phys. B 22 026103

[1] Ibbetson J P, Fini P T, Ness K D, DenBaars S P, Speck J S and Mishra U K 2000 Appl. Phys. Lett. 77 250
[2] Nanjo T, Takeuchi M, Suita M, Oishi T, Abe Y, Tokuda Y and Aoyagi Y 2008 Appl. Phys. Lett. 92 263
[3] Zhang J F, Mao W, Zhang J C and Hao Y 2008 Chin. Phys. B 17 689
[4] Guo B Z, Gong N and Yu F Q 2008 Chin. Phys. B 17 290
[5] Wang M J and Chen K J 2011 IEEE Trans. Electron Dev. 58 460
[6] Wang X D, Hu W D, Chen X S and Lu W 2012 IEEE Trans. Electron. Dev. 59 1393
[7] Xue J S, Zhang J C, Hou Y W, Zhou H, Zhang J F and Hao Y 2012 Appl. Phys. Lett. 100 013507
[8] Hu W D, Chen X S, Quan Z J, Xia C S, Lu W and Ye P D 2006 J. Appl. Phys. 100 074501
[9] Meng F N, Zhang J C, Zhou H, Ma J C, Xue J S, Dang L S, Zhang L X, Lu M, Ai S, Li X G and Hao Y 2012 J. Appl. Phys. 112 023707
[10] Hu W D, Chen X S, Quan Z J, Zhang X M, Huang Y, Xia C S and Lu W 2007 J. Appl. Phys. 102 034502
[11] Zhang J C, Dong Z D, Qin X X, Zheng P T, Liu L J and Hao Y 2009 Acta Phys. Sin. 58 1959 (in Chinese)
[12] Hong S K, Shim K H and Yang J W 2008 Electron. Lett. 44 1091
[13] Xu C, Wang J, Chen H, Xu F, Dong Z, Hao Y and Wen C P 2007 IEEE Electron. Dev. Lett. 28 942
[14] Xu S M, Korec J, Jauregui D, Kocon C, Molly S, Lin H, Daum G, Perelli S, Barry K, Pearce C, Lopez O and Herbsommer J 2009 IEDM, Baltimore, MD, USA, p. 145
[15] Boutros K S, Chandrasekaran S, Luo W B and Mehrotra V 2006 ISPSD, June 4-8, Naples, Italy, p. 1
[16] Balzan M L, Drinkwine M J and Winslow T A 2008 CS MANTECH Conference, April 14-17, Chicago, lllinois, USA, p. 1
[17] Kotani J, Tajima M, Kasai S and Hashizume T 2007 Appl. Phys. Lett. 91 093501
[18] Xie G, Xu E, Zhang B and Ng W T 2012 Microelectronics Reliab. 52 964
[19] Chynoweth A G 1958 Phys. Rev. 109 1537
[20] www.crosslight.com/applications/HEMT.shtml
[1] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[2] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[3] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
[4] Lateral β-Ga2O3 Schottky barrier diode fabricated on (-201) single crystal substrate and its temperature-dependent current-voltage characteristics
Pei-Pei Ma(马培培), Jun Zheng(郑军), Ya-Bao Zhang(张亚宝), Xiang-Quan Liu(刘香全), Zhi Liu(刘智), Yu-Hua Zuo(左玉华), Chun-Lai Xue(薛春来), and Bu-Wen Cheng(成步文). Chin. Phys. B, 2022, 31(4): 047302.
[5] Modeling of high permittivity insulator structure with interface charge by charge compensation
Zhi-Gang Wang(汪志刚), Yun-Feng Gong(龚云峰), and Zhuang Liu(刘壮). Chin. Phys. B, 2022, 31(2): 028501.
[6] Terminal-optimized 700-V LDMOS with improved breakdown voltage and ESD robustness
Jie Xu(许杰), Nai-Long He(何乃龙), Hai-Lian Liang(梁海莲), Sen Zhang(张森), Yu-De Jiang(姜玉德), and Xiao-Feng Gu(顾晓峰). Chin. Phys. B, 2021, 30(6): 067303.
[7] Design and simulation of AlN-based vertical Schottky barrier diodes
Chun-Xu Su(苏春旭), Wei Wen(温暐), Wu-Xiong Fei(费武雄), Wei Mao(毛维), Jia-Jie Chen(陈佳杰), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(6): 067305.
[8] A super-junction SOI-LDMOS with low resistance electron channel
Wei-Zhong Chen(陈伟中), Yuan-Xi Huang(黄元熙), Yao Huang(黄垚), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2021, 30(5): 057303.
[9] Improved 4H-SiC UMOSFET with super-junction shield region
Pei Shen(沈培), Ying Wang(王颖), Xing-Ji Li(李兴冀), Jian-Qun Yang(杨剑群), Cheng-Hao Yu(于成浩), and Fei Cao(曹菲). Chin. Phys. B, 2021, 30(5): 058502.
[10] Novel Si/SiC heterojunction lateral double-diffused metal-oxide semiconductor field-effect transistor with p-type buried layer breaking silicon limit
Baoxing Duan(段宝兴), Xin Huang(黄鑫), Haitao Song (宋海涛), Yandong Wang(王彦东), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(4): 048503.
[11] Novel fast-switching LIGBT with P-buried layer and partial SOI
Haoran Wang(王浩然), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(2): 027302.
[12] Simulation study of high voltage GaN MISFETs with embedded PN junction
Xin-Xing Fei(费新星), Ying Wang(王颖), Xin Luo(罗昕), Cheng-Hao Yu(于成浩). Chin. Phys. B, 2020, 29(8): 080701.
[13] Variable-K double trenches SOI LDMOS with high-concentration P-pillar
Lijuan Wu(吴丽娟), Lin Zhu(朱琳), Xing Chen(陈星). Chin. Phys. B, 2020, 29(5): 057701.
[14] Numerical and analytical investigations for the SOI LDMOS with alternated high-k dielectric and step doped silicon pillars
Jia-Fei Yao(姚佳飞), Yu-Feng Guo(郭宇锋), Zhen-Yu Zhang(张振宇), Ke-Meng Yang(杨可萌), Mao-Lin Zhang(张茂林), Tian Xia(夏天). Chin. Phys. B, 2020, 29(3): 038503.
[15] Breakdown voltage enhancement in GaN channel and AlGaN channel HEMTs using large gate metal height
Zhong-Xu Wang(王中旭), Lin Du(杜林), Jun-Wei Liu(刘俊伟), Ying Wang(王颖), Yun Jiang(江芸), Si-Wei Ji(季思蔚), Shi-Wei Dong(董士伟), Wei-Wei Chen(陈伟伟), Xiao-Hong Tan(谭骁洪), Jin-Long Li(李金龙), Xiao-Jun Li(李小军), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(2): 027301.
No Suggested Reading articles found!