Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(11): 113401    DOI: 10.1088/1674-1056/21/11/113401
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Chen's lattice inversion embedded-atom method for Ni–Al alloy

Zhang Chuan-Hui (张川晖), Huang Shuo (黄烁), Shen Jiang (申江), Chen Nan-Xian (陈难先 )
University of Science and Technology Beijing, Institute of Applied Physics, Beijing 100083, China
Abstract  The structural properties, the enthalpies of formation, and the mechanical properties of some Ni-Al intermetallic compounds (NiAl, Ni3Al, NiAl3, Ni5Al3, Ni3Al4) are studied by using Chen's lattice inversion embedded-atom method (CLI-EAM). Our calculated lattice parameters and cohesive energies of Ni-Al compounds are consistent with the experimental and the other EAM results. The results of enthalpy of formation indicate a strong chemical interaction between Ni and Al in the intermetallic compounds. Through analyzing the alloy elastic constants, we find that all the Ni-Al intermetallic compounds discussed are mechanically stable. The bulk moduli of the compounds increase with the increasing Ni concentration. Our results also suggest that NiAl, Ni3Al, NiAl3, and Ni5Al3 are ductile materials with lower ratios of shear modulus to bulk modulus; while Ni3Al4 is brittle with a higher ratio.
Keywords:  embedded-atom method      lattice inversion      NiAl alloy      mechanical property  
Received:  21 May 2012      Revised:  03 July 2012      Accepted manuscript online: 
PACS:  34.20.-b (Interatomic and intermolecular potentials and forces, potential energy surfaces for collisions)  
  61.66.Dk (Alloys )  
  62.20.-x (Mechanical properties of solids)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB606401).
Corresponding Authors:  Zhang Chuan-Hui     E-mail:  ym23_24@yahoo.com.cn

Cite this article: 

Zhang Chuan-Hui (张川晖), Huang Shuo (黄烁), Shen Jiang (申江), Chen Nan-Xian (陈难先 ) Chen's lattice inversion embedded-atom method for Ni–Al alloy 2012 Chin. Phys. B 21 113401

[1] Moverare J J, Johansson S and Reed R C 2009 Acta Mater. 57 2266
[2] Wang J, Shang S L, Wang Y, Mei Z G, Liang Y F, Du Y and Liu Z K 2011 Calphad 35 562
[3] Curtarolo S, Morgan D and Ceder G 2005 Calphad 29 163
[4] Shi D M, Wen B, Melnik R, Yao S and Lia T J 2009 J. Solid State Chem. 182 2664
[5] Zhang C L, Han P D, Li J M, Chi M, Yan L Y, Liu Y P, Liu X G and Xu B S 2008 J. Phys. D: Appl. Phys. 41 095410
[6] Zhang Y X, Wang J C, Yang Y J, Yang G C and Zhou R H 2009 Chin. Phys. B 18 4407
[7] Fan T Y and Li W 2011 Chin. Phys. B 20 036101
[8] Yu S, Wang C Y and Yu T 2007 Acta Phys. Sin. 56 3212 (in Chinese)
[9] Xiang Z D, Zeng D, Zhu C Y, Wu D J and Datta P K 2011 Corros. Sci. 53 3426
[10] Kataeva N V, Kositsyn S V and Valiullin 2006 Mater. Sci. Eng. A 438-440 312
[11] Chen D, Chen G L and Ni S 2008 J. Alloy Comp. 457 292
[12] Li C, Hou J and Zhao F G 2012 Mater. Lett. 68 255
[13] Major B 2005 Sol. Stat. Phen. 101-102 181
[14] Chen N X 1990 Phys. Rev. Lett. 64 1193
[15] Zhang W Q, Xie Q, Zhao X D and Chen N X 1998 Science in China A 28 183
[16] Finnis M W and Sinclair J E 1984 Philos. Mag. A 50 45
[17] Zhang S and Chen N X 2002 Phys. Rev. B 66 064106
[18] Long Y, Chen N X and Zhang W Q 2005 J. Phys.: Condens. Matter 17 2045
[19] Chen N X, Shen J and Su X P 2001 J. Phys.: Condens. Matter 13 2727
[20] Cai J, Hu X Y and Chen N X 2005 J. Phys. Chem. Sol. 66 1256
[21] Qian P, Liu J L, Hu Y W, Bai L J and Shen J 2010 Chin. Phys. B 19 126001
[22] Qian P, Liu J L and Hu Y W 2011 Chin. Phys. B 20 076104
[23] Zhang C H, Han J J, Huang S and Shen J 2011 Adv. Mater. Res. 320 415
[24] Morse P M 1929 Phys. Rev. 34 57
[25] Daw M S and Baskes M I 1983 Phys. Rev. Lett. 50 1285
[26] Daw M S and Baskes M I 1984 Phys. Rev. B 29 6443
[27] Banerjea A and Smith J R 1988 Phys. Rev. B 37 6632
[28] Norskov J K and Lang N D 1980 Phys. Rev. B 21 2131
[29] Rose J H, Smith J R, Guinea F and Ferrante J 1984 Phys. Rev. B 29 2963
[30] Anderson O L 1963 J. Phys. Chem. Soli. 24 909
[31] Zhang B W, Hu W Y and Su X L 2003 Theory of Embedded Atom Method and Its Application to Materials Science-Atomic Scale Materials Design Theory (Hunan: Hunan University Press)
[32] Mishin Y, Mehl M J and Papaconstantopoulos D A 2002 Phys. Rev. B 65 224114
[33] Khadikikar P, Locci I, Vedula K and Michal G 1993 Met. Trans. A 24 83
[34] Liu Y P 2004 Termodynamics Properties and Point Defects of Intermetallics of Al Binary Alloys (Guangxi: Guangxi University)
[35] Yu S, Wang C Y, Yu T and Cai Jun 2007 Physica B 396 138
[36] Villars P and Calvert L 1997 Pearson's Handbook Desk Edition: Crystallographic Data for Intermetallic Phases (Materials Park: ASM International)
[37] Hultgren R, Desai P D, Hawkins D T, Gleiser N and Kelly K K 1973 Selected Values of Thermodynamic Properties of Binary Alloys (Materials Park: ASM International)
[38] Eskov V M, Samokhval V V and Vecher A A 1974 Russian Metallurgy 2 118
[39] Rzyman K and Moser Z 2004 Prog. Mater. Sci. 49 581
[40] Ren X, Otsuka K and Kogachi M 1999 Scr. Mater. 41 907
[41] Brandes E A 1983 Smithells Metals Reference Book (London: Butterworths)
[42] Farkas D, Mutasa B and Ternes K 1995 Modelling Simul. Mater. Sci. Eng. 3 201
[43] Rusovic N and Warlimont H 1977 Physica Status Solidi A 44 609
[44] Wasilewski R J 1966 Trans. TMS AIME 236 455
[45] Dickson R W, Wachtman J B and Copley S M 1969 J. Appl. Phys. 40 2276
[46] Prikhodko S V, Carnes J D, Isaak D G, Yang H and Ardell A J 1999 Metall. Mater. Trans. A 30 2403
[47] Nye J F 1985 Physical Properties of Crystals (Oxford: Oxford University)
[48] Beckstein O, Klepeis J E, Hart G L W and Pankratov O 2001 Phys. Rev. B 63 134112
[49] Haines J, Leger J M and Bocquillon G 2001 Annu. Rev. Mater. Res. 31 1
[50] Pugh S F 1954 The Philosophical Magazine 45 823
[51] Gaydosh D J, Jech R W and Titran R H 1985 J. Mater. Sci. Lett. 4 138
[52] Otto J W, Vassiliou J K and Frommeyer G 1997 J. Mater. Res. 12 3106
[53] Goto T, Sasaki T and Hirose Y 1999 JCPDS-International Centre for Diffraction Data 518
[1] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[2] Surface defects, stress evolution, and laser damage enhancement mechanism of fused silica under oxygen-enriched condition
Wei-Yuan Luo(罗韦媛), Wen-Feng Sun(孙文丰), Bo Li(黎波), Xia Xiang(向霞), Xiao-Long Jiang(蒋晓龙),Wei Liao(廖威), Hai-Jun Wang(王海军), Xiao-Dong Yuan(袁晓东),Xiao-Dong Jiang(蒋晓东), and Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2022, 31(5): 054214.
[3] Mechanical property and deformation mechanism of gold nanowire with non-uniform distribution of twinned boundaries: A molecular dynamics simulation study
Qi-Xin Xiao(肖启鑫), Zhao-Yang Hou(侯兆阳), Chang Li(李昌), and Yuan Niu(牛媛). Chin. Phys. B, 2021, 30(5): 056101.
[4] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
[5] Balancing strength and plasticity of dual-phase amorphous/crystalline nanostructured Mg alloys
Jia-Yi Wang(王佳怡), Hai-Yang Song(宋海洋), Min-Rong An(安敏荣), Qiong Deng(邓琼), Yu-Long Li(李玉龙). Chin. Phys. B, 2020, 29(6): 066201.
[6] Ab initio study on the anisotropy of mechanical behavior and deformation mechanism for boron carbide
Jun Li(李君), Shuang Xu(徐爽), Jin-Yong Zhang(张金咏), Li-Sheng Liu(刘立胜), Qi-Wen Liu(刘齐文), Wu-Chang She(佘武昌), Zheng-Yi Fu(傅正义). Chin. Phys. B, 2017, 26(4): 047101.
[7] First principles investigation of protactinium-based oxide-perovskites for flexible opto—electronic devices
Nazia Erum, Muhammad Azhar Iqbal. Chin. Phys. B, 2017, 26(4): 047102.
[8] Performance improvement of continuous carbon nanotube fibers by acid treatment
Qiang Zhang(张强), Kewei Li(李克伟), Qingxia Fan(范庆霞), Xiaogang Xia(夏晓刚), Nan Zhang(张楠), Zhuojian Xiao(肖卓建), Wenbin Zhou(周文斌), Feng Yang(杨丰), Yanchun Wang(王艳春), Huaping Liu(刘华平), Weiya Zhou(周维亚). Chin. Phys. B, 2017, 26(2): 028802.
[9] Secondary relaxation and dynamic heterogeneity in metallic glasses: A brief review
J C Qiao(乔吉超), Q Wang, D Crespo, Y Yang(杨勇), J M Pelletier. Chin. Phys. B, 2017, 26(1): 016402.
[10] Effect of a force-free end on the mechanical property of a biopolymer–A path integral approach
Zicong Zhou(周子聪), Béla Joós. Chin. Phys. B, 2016, 25(8): 088701.
[11] Effects of tilt interface boundary on mechanical properties of Cu/Ni nanoscale metallic multilayer composites
Yang Meng (杨萌), Xu Jian-Gang (徐建刚), Song Hai-Yang (宋海洋), Zhang Yun-Guang (张云光). Chin. Phys. B, 2015, 24(9): 096202.
[12] Stretching instability of intrinsically curved semiflexible biopolymers: A lattice model approach
Zhou Zi-Cong (周子聪), Lin Fang-Ting (林方庭), Chen Bo-Han (陈柏翰). Chin. Phys. B, 2015, 24(2): 028701.
[13] Spray forming and mechanical properties of a new type powder metallurgy superalloy
Jia Chong-Lin (贾崇林), Ge Chang-Chun (葛昌纯), Xia Min (夏敏), Gu Tian-Fu (谷天赋). Chin. Phys. B, 2015, 24(11): 118107.
[14] The ternary Ni–Al–Co embedded-atom-method potential for γ/γ’ Ni-based single-crystal superalloys:Construction and application
Du Jun-Ping (杜俊平), Wang Chong-Yu (王崇愚), Yu Tao (于涛). Chin. Phys. B, 2014, 23(3): 033401.
[15] Mechanical properties of self-irradiated single-crystal copper
Li Wei-Na (李维娜), Xue Jian-Ming (薛建明), Wang Jian-Xiang (王建祥), Duan Hui-Ling (段慧玲). Chin. Phys. B, 2014, 23(3): 036101.
No Suggested Reading articles found!