Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(10): 100307    DOI: 10.1088/1674-1056/21/10/100307
GENERAL Prev   Next  

Experimental demonstration of passive decoy state quantum key distribution

Zhang Yang, Wang Shuang, Yin Zhen-Qiang, Chen Wei, Liang Wen-Ye, Li Hong-Wei, Guo Guang-Can, Han Zheng-Fu
Key Laboratory of Quantum Information, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026, China
Abstract  Passive decoy state quantum key distribution (PDS-QKD) has advantages in high-speed scenarios. We propose a modified model to simulate the PDS-QKD with a weak coherent light source based on Curty's theory [Opt. Lett.34 3238 (2009)]. The modified model can provide better performance in a practical PDS-QKD system. Moreover, we report an experimental demonstration of the PDS-QKD of over 22.0-dB channel loss.
Keywords:  quantum key distribution      passive decoy state method  
Received:  12 April 2012      Revised:  21 June 2012      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
Fund: Project supported by the National Basic Research Program of China (Grants Nos. 2011CBA00200 and 2011CB921200), the National Natural Science Foundation of China (Grant Nos. 60921091 and 61101137), and the China Postdoctoral Science Foundation (Grant Nos. 20100480695 and 2012M511419).
Corresponding Authors:  Wang Shuang, Yin Zhen-Qiang     E-mail:  wshuang@ustc.edu.cn; yinzheqi@mail.ustc.edu.cn

Cite this article: 

Zhang Yang, Wang Shuang, Yin Zhen-Qiang, Chen Wei, Liang Wen-Ye, Li Hong-Wei, Guo Guang-Can, Han Zheng-Fu Experimental demonstration of passive decoy state quantum key distribution 2012 Chin. Phys. B 21 100307

[1] Bennett C H and Brassard G 1984 Proceedings of the IEEE Int. Conf. on Computers, Systems and Signal Processing Bangalore, India, p. 175
[2] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[3] Scarani V, Bechmann-Pasquinucci H, Cerf M, Dušek N J, Lütkenhaus N and Peev M 2009 Rev. Mod. Phys. 81 1301
[4] Gobby C, Yuan Z L and Shields A J 2004 Appl. Phys. Lett. 84 3762
[5] Mo X F, Zhu B, Han Z F, Gui Y Z and Guo G C 2005 Opt. Lett. 30 2632
[6] Yin Z Q, Han Z F, Chen W, Xu F X, Wu Q L and G C Guo 2008 Chin. Phys. Lett. 25 3547
[7] Chen W, Han Z F, Zhang T, Wen H, Yin Z Q, Xu F X, Wu Q L, Liu Y, Zhang Y, Mo X F, Gui Y Z, Wei G and Guo G C 2009 IEEE Photon. Technol. Lett. 21 575
[8] Xu F X, Chen W, Wang S, Yin Z Q, Zhang Y, Liu Y, Zhou Z, Zhao Y B, Li H W, Liu D, Han Z F and Guo G C 2009 Chin. Sci. Bull. 54 2991
[9] Wang S, Chen W, Yin Z Q, Zhang Y, Zhang T, Li H W, Xu F X, Zhou Z, Yang Y, Huang D J, Zhang L J, Li F Y, Liu D, Wang Y G, Guo G C and Han Z F 2010 Opt. Lett. 35 2454
[10] Gottesman D, Lo H K, Lütkenhaus N and Preskill J 2004 Quantum Infor. Comput. 4 325
[11] Liu D, Yin Z Q, Wang S, Wang F M, Chen W and Han Z F 2012 Chin. Phys. B 21 060202
[12] Huttner B, Imoto N, Gisin N and Mor T 1995 Phys. Rev. A 51 1863
[13] Brassard G, Lütkenhaus N, Mor T and Sanders B C 2000 Phys. Rev. Lett. 85 1330
[14] Lütkenhaus N 2000 Phys. Rev. A 61 052304
[15] Hwang W Y 2003 Phys. Rev. Lett. 91 057901
[16] Lo H K, Ma X and Chen K 2005 Phys. Rev. Lett. 94 230504
[17] Wang X B 2005 Phys. Rev. Lett. 94 230503
[18] Ma X, Qi B, Zhao Y and Lo H K 2005 Phys. Rev. A 72 012326
[19] Mauerer W and Silberhorn C 2007 Phys. Rev. A 75 050305
[20] Adachi Y, Yamamoto T, Koashi M and Imoto N 2007 Phys. Rev. Lett. 99 180503
[21] Ma X and Lo H K 2008 New J. Phys. 10 073018
[22] Xu F X, Wang S, Han Z F and Guo G C 2010 Chin. Phys. B 19 100312
[23] Curty M, Moroder T, Ma X and Lütkenhaus N 2009 Opt. Lett. 34 3238
[24] Curty M, Ma X, Qi B and Moroder T 2010 Phys. Rev. A 81 022310
[25] Zhang Y, Chen W, Wang S, Yin Z Q, Xu F X, Wu X W, Dong C H, Li H W, Guo G C and Han Z F 2010 Opt. Lett. 35 3393
[1] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[2] Continuous-variable quantum key distribution based on photon addition operation
Xiao-Ting Chen(陈小婷), Lu-Ping Zhang(张露萍), Shou-Kang Chang(常守康), Huan Zhang(张欢), and Li-Yun Hu(胡利云). Chin. Phys. B, 2021, 30(6): 060304.
[3] One-decoy state reference-frame-independent quantum key distribution
Xiang Li(李想), Hua-Wei Yuan(远华伟), Chun-Mei Zhang(张春梅), Qin Wang(王琴). Chin. Phys. B, 2020, 29(7): 070303.
[4] Hybrid linear amplifier-involved detection for continuous variable quantum key distribution with thermal states
Yu-Qian He(贺宇千), Yun Mao(毛云), Hai Zhong(钟海), Duang Huang(黄端), Ying Guo(郭迎). Chin. Phys. B, 2020, 29(5): 050309.
[5] Reconciliation for CV-QKD using globally-coupled LDPC codes
Jin-Jing Shi(石金晶), Bo-Peng Li(李伯鹏), Duan Huang(黄端). Chin. Phys. B, 2020, 29(4): 040301.
[6] Reference-frame-independent quantum key distribution with an untrusted source
Jia-Ji Li(李家骥), Yang Wang(汪洋), Hong-Wei Li(李宏伟), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2020, 29(3): 030303.
[7] Performance analysis of continuous-variable measurement-device-independent quantum key distribution under diverse weather conditions
Shu-Jing Zhang(张淑静), Chen Xiao(肖晨), Chun Zhou(周淳), Xiang Wang(汪翔), Jian-Shu Yao(要建姝), Hai-Long Zhang(张海龙), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2020, 29(2): 020301.
[8] Attacking a high-dimensional quantum key distribution system with wavelength-dependent beam splitter
Ge-Hai Du(杜舸海), Hong-Wei Li(李宏伟), Yang Wang(汪洋), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2019, 28(9): 090301.
[9] Temperature effects on atmospheric continuous-variable quantum key distribution
Shu-Jing Zhang(张淑静), Hong-Xin Ma(马鸿鑫), Xiang Wang(汪翔), Chun Zhou(周淳), Wan-Su Bao(鲍皖苏), Hai-Long Zhang(张海龙). Chin. Phys. B, 2019, 28(8): 080304.
[10] Proof-of-principle experimental demonstration of quantum secure imaging based on quantum key distribution
Yi-Bo Zhao(赵义博), Wan-Li Zhang(张万里), Dong Wang(王东), Xiao-Tian Song(宋萧天), Liang-Jiang Zhou(周良将), Chi-Biao Ding(丁赤飚). Chin. Phys. B, 2019, 28(10): 104203.
[11] Finite-size analysis of continuous-variable quantum key distribution with entanglement in the middle
Ying Guo(郭迎), Yu Su(苏玉), Jian Zhou(周健), Ling Zhang(张玲), Duan Huang(黄端). Chin. Phys. B, 2019, 28(1): 010305.
[12] Finite-size analysis of eight-state continuous-variable quantum key distribution with the linear optics cloning machine
Hang Zhang(张航), Yu Mao(毛宇), Duan Huang(黄端), Ying Guo(郭迎), Xiaodong Wu(吴晓东), Ling Zhang(张玲). Chin. Phys. B, 2018, 27(9): 090307.
[13] Controlling a sine wave gating single-photon detector by exploiting its filtering loophole
Lin-Xi Feng(冯林溪), Mu-Sheng Jiang(江木生), Wan-Su Bao(鲍皖苏), Hong-Wei Li(李宏伟), Chun Zhou(周淳), Yang Wang(汪洋). Chin. Phys. B, 2018, 27(8): 080305.
[14] Continuous-variable quantum key distribution based on continuous random basis choice
Weiqi Liu(刘维琪), Jinye Peng(彭进业), Peng Huang(黄鹏), Shiyu Wang(汪诗寓), Tao Wang(王涛), Guihua Zeng(曾贵华). Chin. Phys. B, 2018, 27(7): 070305.
[15] Practical security of continuous-variable quantum key distribution under finite-dimensional effect of multi-dimensional reconciliation
Yingming Zhou(周颖明), Xue-Qin Jiang(蒋学芹), Weiqi Liu(刘维琪), Tao Wang(王涛), Peng Huang(黄鹏), Guihua Zeng(曾贵华). Chin. Phys. B, 2018, 27(5): 050301.
No Suggested Reading articles found!