Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(10): 108701    DOI: 10.1088/1674-1056/21/10/108701
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Spiking sychronization regulated by noise in three types of Hodgkin–Huxley neuronal networks

Zhang Zheng-Zhen, Zeng Shang-You, Tang Wen-Yan, Hu Jin-Lin, Zeng Shao-Wen, Ning Wei-Lian, Qiu Yi, Wu Hui-Si
College of Electronic Engineering, Guangxi Normal University, Guilin 541004, China
Abstract  In this paper, we study spiking synchronization in three different types of Hodgkin-Huxley neuronal networks, which are the small-world, regular, and random neuronal networks. All the neurons are subjected to subthreshold stimulus and external noise. It is found that in each of all the neuronal networks there is an optimal strength of noise to induce the maximal spiking synchronization. We further demonstrate that in each of the neuronal networks there is a range of synaptic conductance to induce the effect that an optimal strength of noise maximizes the spiking synchronization. Only when the magnitude of the synaptic conductance is moderate, will the effect be considerable. However, if the synaptic conductance is small or large, the effect vanishes. As the connections between neurons increase, the synaptic conductance to maximize the effect decreases. Therefore, we show quantitatively that the noise-induced maximal synchronization in the Hodgkin-Huxley neuronal network is a general effect, regardless of the specific type of neuronal network.
Keywords:  spiking synchronization      neuronal network      noise  
Received:  03 December 2011      Revised:  03 May 2012      Published:  01 September 2012
PACS:  87.19.lm (Synchronization in the nervous system)  
  87.19.L- (Neuroscience)  
  87.19.lj (Neuronal network dynamics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11065003), the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant No. 2011GXNSFA018129), and the Research Funding of Guangxi Provincial Education Department, China (Grant No. 201012MS026).
Corresponding Authors:  Zeng Shang-You     E-mail:  zsy@mailbox.gxnu.edu.cn

Cite this article: 

Zhang Zheng-Zhen, Zeng Shang-You, Tang Wen-Yan, Hu Jin-Lin, Zeng Shao-Wen, Ning Wei-Lian, Qiu Yi, Wu Hui-Si Spiking sychronization regulated by noise in three types of Hodgkin–Huxley neuronal networks 2012 Chin. Phys. B 21 108701

[1] Huang L, Feng R and Wang M 2004 Phys. Lett. A 320 271
[2] Dibner C, Schibler U and Albrecht U 2010 Ann. Rev. Physiol. 72 517
[3] Rossoni E, Chen Y, Ding M and Feng J 2005 Phys. Rev. E 71 061904
[4] Ward L M 2003 Trends in Cognitive Sciences 7 553
[5] Melloni L, Molina C, Pena M, Torres D, Singer W and Rodriguez E 2007 J. Neurosci. 27 2858
[6] Wu X, Chen X, Li Z, Han S and Zhang D 2007 NeuroImage 35 1654
[7] Klimesch W, Freunberger R and Sauseng P 2010 Neurosci. Biobehav. Rev. 34 1002
[8] Arecchi F T 2004 Physica A 338 218
[9] Watts D J and Strogaz H S 1998 Nature 393 440
[10] Qian Y, Huang X, Hu G and Liao X 2010 Phys. Rev. E 81 036101
[11] Liao W, Ding J, Marinazzo D, Xu Q, Wang Z, Yuan C, Zhang Z, Lu G and Chen H 2011 NeuroImage 54 2683
[12] Bullmore E and Sporns O 2009 Nat. Rev. Neurosci. 10 187
[13] He Y, Chen Z J and Evans A C 2007 Cereb. Cortex 17 2407
[14] Timme M, Wolf F and Geisel T 2002 Phys. Rev. Lett. 89 258701
[15] Gelenbe E and Timotheou S 2008 Neural Comp. 20 2308
[16] Börgers C and Kopell N 2003 Neural Comp. 15 509
[17] Zeng S Y, Tang Y and Jung P 2007 Phys. Rev. E 76 011905
[18] Hänggi P 2002 Chem. Phys. Chem. 3 285
[19] Lindner B, García-Ojalvo J, Neiman A and Schimansky-Geier L 2004 Phys. Rep. 392 321
[20] Liu S B, Wu Y, Hao Z W, Li Y J and Jia N 2012 Acta Phys. Sin. 61 020503 (in Chinese)
[21] Xu C and Kang Y M 2011 Acta Phys. Sin. 60 108701 (in Chinese)
[22] Liu S J, Wang Q, Liu B, Yan S W and Fumihiko S 2011 Chin. Phys. B 20 128703
[23] Li L, Jin Z L and Li B 2011 Acta Phys. Sin. 60 048703 (in Chinese)
[24] Lindner J F, Bennett M and Wiesenfeld K 2006 Phys. Rev. E 73 031107
[25] Toral R, Mirasso C R and Gunton J D 2003 Europhys. Lett. 61 162
[26] Perc M 2008 Phys. Rev. E 78 036105
[27] Gao Z, Hu B and Hu G 2001 Phys. Rev. E 65 016209
[28] Cao J, Li P and Wang W 2006 Phys. Lett. A 353 318
[29] Li P, Cao J and Wang Z 2007 Physica A 373 261
[30] Chen M and Chen W 2009 Chaos, Solitons & Fractals 41 2716
[31] Han F, Lu Q S, Wiercigroch M and Ji Q B 2009 Chin. Phys. B 18 482
[32] Gao M and Cui B 2009 Chin. Phys. B 18 76
[33] Tang Y, Zhong H and Fang J 2008 Chin. Phys. B 17 4080
[34] Shi X and Lu Q 2005 Chin. Phys. 14 77
[35] Gong Y, Wang M, Hou Z and Xin H 2005 Chem. Phys. Chem. 6 1042
[36] Masuda N and Aihara K 2004 Biological Cybernetics 90 302
[37] Yu Y, Wang W, Wang J and Liu F 2001 Phys. Rev. E 63 021907
[38] Zeng S and Jung P 2004 Phys. Rev. E 70 011903
[39] Bernander O, Douglas R J, Martin K A and Koch C 1991 Proc. Natl. Acad. Sci. 88 11569
[40] Megias M, Emri Z S, Ereund T F and Gulyas A I 2001 Neuroscience 102 527
[41] Newman M E J and Watts D J 1999 Phys. Lett. A 360 341
[42] Ozer M and Uzuntarla M 2008 Phys. Lett. A 372 4603
[43] Neiman A, Silchenko A, Anishchenko V and Schimansky-Geier L 1998 Phys. Rev. E 58 7118
[44] Hu B and Zhou C 2000 Phys. Rev. E 61 R1001
[45] Osipov G V, Pikovsky A S, Rosenblum M G and Kurths J 1997 Phys. Rev. E 55 2353
[46] Neiman A, Schimansky-Geier L, Cornell-Bell A and Moss F 1999 Phys. Rev. Lett. 83 4896
[47] Gang H, Ditzinger T, Ning C Z and Haken H 1993 Phys. Rev. Lett. 71 807
[48] Yu Y, Wang W, Wang J and Liu F 2001 Phys. Rev. E 63 021907
[49] Li S G, Neiman A and Kim S 1998 Phys. Rev. E 57 3292
[50] Kwon O and Moon H T 2002 Phys. Lett. A 298 319
[1] A high performance fast-Fourier-transform spectrum analyzer for measuring spin noise spectrums
Yu Tong(仝煜), Lin Wang(王淋), Wen-Zhe Zhang(张闻哲), Ming-Dong Zhu(朱明东), Xi Qin(秦熙), Min Jiang(江敏), Xing Rong(荣星), Jiangfeng Du(杜江峰). Chin. Phys. B, 2020, 29(9): 090704.
[2] Noise temperature distribution of superconducting hot electron bolometer mixers
Kang-Min Zhou(周康敏), Wei Miao(缪巍), Yue Geng(耿悦), Yan Delorme, Wen Zhang(张文), Yuan Ren(任远), Kun Zhang(张坤), Sheng-Cai Shi(史生才). Chin. Phys. B, 2020, 29(5): 058505.
[3] Asymmetric stochastic resonance under non-Gaussian colored noise and time-delayed feedback
Ting-Ting Shi(石婷婷), Xue-Mei Xu(许雪梅), Ke-Hui Sun(孙克辉), Yi-Peng Ding(丁一鹏), Guo-Wei Huang(黄国伟). Chin. Phys. B, 2020, 29(5): 050501.
[4] Dynamics of entropic uncertainty for three types of three-level atomic systems under the random telegraph noise
Xiong Xu(许雄), Mao-Fa Fang(方卯发). Chin. Phys. B, 2020, 29(5): 057305.
[5] Novel Woods-Saxon stochastic resonance system for weak signal detection
Yong-Hui Zhou(周永辉), Xue-Mei Xu(许雪梅), Lin-Zi Yin(尹林子), Yi-Peng Ding(丁一鹏), Jia-Feng Ding(丁家峰), Ke-Hui Sun(孙克辉). Chin. Phys. B, 2020, 29(4): 040503.
[6] An Yb-fiber frequency comb phase-locked to microwave standard and optical reference
Hui-Bo Wang(汪会波), Hai-Nian Han(韩海年), Zi-Yue Zhang(张子越), Xiao-Dong Shao(邵晓东), Jiang-Feng Zhu(朱江峰), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2020, 29(3): 030601.
[7] A low-noise, high-SNR balanced homodyne detector for the bright squeezed state measurement in 1-100 kHz range
Jin-Rong Wang(王锦荣), Qing-Wei Wang(王庆伟), Long Tian(田龙), Jing Su(苏静), Yao-Hui Zheng(郑耀辉). Chin. Phys. B, 2020, 29(3): 034205.
[8] PBTI stress-induced 1/ f noise in n-channel FinFET
Dan-Yang Chen(陈丹旸), Jin-Shun Bi(毕津顺), Kai Xi(习凯), and Gang Wang(王刚). Chin. Phys. B, 2020, 29(12): 128501.
[9] Noise-like rectangular pulses in a mode-locked double-clad Er:Yb laser with a record pulse energy
Tianyi Wu(吴田宜), Zhiyuan Dou(窦志远), Bin Zhang(张斌), Jing Hou(侯静). Chin. Phys. B, 2020, 29(1): 014202.
[10] Fault tolerant controlled quantum dialogue against collective noise
Li-Wei Chang(常利伟), Yu-Qing Zhang(张宇青), Xiao-Xiong Tian(田晓雄), Yu-Hua Qian(钱宇华), Shi-Hui Zheng(郑世慧). Chin. Phys. B, 2020, 29(1): 010304.
[11] Noise properties of multi-combination information in x-ray grating-based phase-contrast imaging
Wali Faiz, Ji Li(李冀), Kun Gao(高昆), Zhao Wu(吴朝), Yao-Hu Lei(雷耀虎), Jian-Heng Huang(黄建衡), Pei-Ping Zhu(朱佩平). Chin. Phys. B, 2020, 29(1): 014301.
[12] Highly sensitive detection of Rydberg atoms with fluorescence loss spectrum in cold atoms
Xuerong Shi(师雪荣), Hao Zhang(张好), Mingyong Jing(景明勇), Linjie Zhang(张临杰), Liantuan Xiao(肖连团), Suotang Jia(贾锁堂). Chin. Phys. B, 2020, 29(1): 013201.
[13] Stable continuous-wave single-frequency intracavity frequency-doubled laser with intensity noise suppressed in audio frequency region
Ying-Hao Gao(高英豪), Yuan-Ji Li(李渊骥), Jin-Xia Feng(冯晋霞), Kuan-Shou Zhang(张宽收). Chin. Phys. B, 2019, 28(9): 094204.
[14] Negative gate bias stress effects on conduction and low frequency noise characteristics in p-type poly-Si thin-film transistors
Chao-Yang Han(韩朝阳), Yuan Liu(刘远), Yu-Rong Liu(刘玉荣), Ya-Yi Chen(陈雅怡), Li Wang(王黎), Rong-Sheng Chen(陈荣盛). Chin. Phys. B, 2019, 28(8): 088502.
[15] Ramsey-coherent population trapping Cs atomic clock based on lin||lin optical pumping with dispersion detection
Peng-Fei Cheng(程鹏飞), Jian-Wei Zhang(张建伟), Li-Jun Wang(王力军). Chin. Phys. B, 2019, 28(7): 070601.
No Suggested Reading articles found!