Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(9): 094216    DOI: 10.1088/1674-1056/21/9/094216
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Reflecting single attosecond pulse by periodic Mo/Si multilayer mirrors with different layers

Lin Cheng-You (林承友), Liu Da-He (刘大禾)
Applied Optics Beijing Area Major Laboratory, Department of Physics,Beijing Normal University, Beijing 100875, China
Abstract  The reflecting of single attosecond pulse from a periodic Mo/Si multilayer was investigated. With changing the number of bi-layers, the periodic multilayer showed greatly different spectral and temporal responses of the attosecond pulse reflection, which has been discussed in detail in this paper. The capability of attosecond pulse reflection of the periodic multilayers with different bi-layer numbers has been evaluated using suitable temporal parameters. In addition, the condition for obtaining high-efficiency reflected pulses has been analyzed by comparing the pulse responses of the periodic multilayer with different layers. The transfer-matrix method together with the fast Fourier transform has been used in our simulation.
Keywords:  attosecond pulse      periodic multilayer      pulse response  
Received:  29 January 2012      Revised:  23 February 2012      Accepted manuscript online: 
PACS:  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  41.50.+h (X-ray beams and x-ray optics)  
  42.30.Kq (Fourier optics)  
Corresponding Authors:  Liu Da-He     E-mail:  dhliu@bnu.edu.cn

Cite this article: 

Lin Cheng-You (林承友), Liu Da-He (刘大禾) Reflecting single attosecond pulse by periodic Mo/Si multilayer mirrors with different layers 2012 Chin. Phys. B 21 094216

[1] Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163
[2] Paul P M, Toma E S, Breger P, Mullot G, Augé F, Balcou Ph, Muller H G and Agostini P 2001 Science 292 1689
[3] Antoine P, L'Huillier A and Lewenstein M 1996 Phys. Rev. Lett. 77 1234
[4] Kienberger R, Goulielmakis E, Uiberacker M, Baltuska A, Yakovlev V, Bammer F, Scrinzi1 A, Westerwalbesloh Th, Kleineberg U, Heinzmann U, Drescher M and Krausz F 2004 Nature 427 817
[5] Schultze M, Goulielmakis E, Uiberacker M, Hofstetter M, Kim J, Kim D, Krausz F and Kleineberg U 2007 New. J. Phys. 9 243
[6] Sansone G, Benedetti E, Calegari F, Vozzi C, Avaldi L, Flammini R, Poletto L, Villoresi P, Altucci C, Velotta R, Stagira S, de Silvestri S and Nisoli M 2006 Science 314 443
[7] Drescher M, Hentschel M, Kienberger R, Tempea G, Spielmann C, Reider G A, Corkum P B and Krausz F 2001 Science 291 1923
[8] Hong W Y, Yang Z Y, Lan P F, Zhang Q B, Li Q G and Lu P X 2009 Acta Phys. Sin. 58 4914 (in Chinese)
[9] Ye X L, Zhou X X, Zhao S F and Li P C 2009 Acta Phys. Sin. 58 1579 (in Chinese)
[10] Pan H L, Li P C and Zhou X X 2011 Acta Phys. Sin. 60 043203 (in Chinese)
[11] Li W, Wang G L and Zhou X X 2011 Acta Phys. Sin. 60 123201 (in Chinese)
[12] Morlens A S, Balcou P, Zeitoun P, Valentin C, Laude V and Kazamias S 2005 Opt. Lett. 30 1554
[13] Morlens A S, López-Martens R, Boyko O, Zeitoun P, Balcou P, Varjú K, Gustafsson E, Remetter T, L'Huillier A, Kazamias S, Gautier J, Delmotte F and Ravet M F 2006 Opt. Lett. 31 1558
[14] Wonisch A, Neuhusler U, Kabachnik N M, Uphues T, Uiberacker M, Yakovlev V, Krausz F, Drescher M, Kleineberg U and Heinzmann U 2006 Appl. Opt. 45 4147
[15] Suman M, Frassetto F, Nicolosi P and Pelizzo M G 2007 Appl. Opt. 46 8159
[16] Beigman I L, Pirozhkov A S and Ragozin E N 2001 JETP Lett. 74 149
[17] Beigman I L, Pirozhkov A S and Ragozin E N 2002 J. Opt. A 4 433
[18] Kohlachevskii N N, Pirozhkov A S and Ragozin E N 2000 Quantum Electron. 30 428
[19] Mairesse Y, Bohan A de, Frasinski L J, Merdji H, Dinu L C, Monchicourt P, Breger P, Kovacev M, Auguste T, Carré B, Muller H G, Agostini P and Saliéres P 2004 Phys. Rev. Lett. 93 163901
[20] Lukács A, Várallyay Z and Szipöcs R 2005 Advanced Solid-State Photonics (TOPS) (Denman C and Sorokina I, ed.) 98 806
[21] Ksenzov D, Grigorian S and Pietsch U 2008 J. Synchrotron Rad. 15 19
[22] Ksenzov D, Grigorian S, Hendel S, Bienert F, Sacher M D, Heinzmann U and Pietsch U 2009 Phys. Status Solidi A 206 1875
[23] Shastri S D, Zambianchi P and Mills D M 2001 J. Synchrotron Rad. 8 1131
[24] Henke B L, Gullikson E M and Davis J C 1993 At. Data Nucl. Data Tables 54 181
[25] Aquila A, Salmassi F and Gullikson E 2008 Opt. Lett. 33 455
[26] Yulin S, Feigl T, Benoit N and Kaiser N 2005 Proc. SPIE 5645 289
[1] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[2] Enhancement of isolated attosecond pulse generation by using long gas medium
Yueying Liang(梁玥瑛), Xinkui He(贺新奎), Kun Zhao(赵昆), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2022, 31(4): 043302.
[3] Generation of elliptical isolated attosecond pulse from oriented H2+ in a linearly polarized laser field
Yun-He Xing(邢云鹤), Jun Zhang(张军), Xiao-Xin Huo(霍晓鑫), Qing-Yun Xu(徐清芸), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2022, 31(4): 043203.
[4] Amplitude and rotation of the ellipticity of harmonicsfrom a linearly polarized laser field
Ping Li(李萍), Na Gao(高娜), Rui-Xian Yu(蔚瑞贤), Jun Wang(王俊), Su-Yu Li(李苏宇), Fu-Ming Guo(郭福明), and Yu-Jun Yang(杨玉军). Chin. Phys. B, 2022, 31(10): 103303.
[5] Effects of initial electronic state on vortex patterns in counter-rotating circularly polarized attosecond pulses
Qi Zhen(甄琪), Jia-He Chen(陈佳贺), Si-Qi Zhang(张思琪), Zhi-Jie Yang(杨志杰), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2021, 30(2): 024203.
[6] Effect of pulse duration on generation of attosecond pulse with coherent wake emission
Siyu Chen(陈思宇), Zhinan Zeng(曾志男), and Ruxin Li(李儒新). Chin. Phys. B, 2021, 30(11): 114206.
[7] Multiphoton quantum dynamics of many-electron atomic and molecular systems in intense laser fields
Peng-Cheng Li(李鹏程), Shih-I Chu. Chin. Phys. B, 2020, 29(8): 083202.
[8] Controlling paths of high-order harmonic generation by orthogonal two-color fields
Ze-Hui Ma(马泽慧), Cai-Ping Zhang(张彩萍), Jun-Lin Ma(马俊琳), Xiang-Yang Miao(苗向阳). Chin. Phys. B, 2020, 29(4): 043201.
[9] Role of quantum paths in generation of attosecond pulses
M R Sami and A Shahbaz†. Chin. Phys. B, 2020, 29(10): 104207.
[10] Attosecond pulse trains driven by IR pulses spectrally broadened via supercontinuum generation in solid thin plates
Yu-Jiao Jiang(江昱佼), Yue-Ying Liang(梁玥瑛), Yi-Tan Gao(高亦谈), Kun Zhao(赵昆), Si-Yuan Xu(许思源), Ji Wang(王佶), Xin-Kui He(贺新奎), Hao Teng(滕浩), Jiang-Feng Zhu(朱江峰), Yun-Lin Chen(陈云琳), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2020, 29(1): 013206.
[11] Influence of intraband motion on the interband excitation and high harmonic generation
Rui-Xin Zuo(左瑞欣), Xiao-Hong Song(宋晓红), Xi-Wang Liu(刘希望), Shi-Dong Yang(杨士栋), Wei-Feng Yang(杨玮枫). Chin. Phys. B, 2019, 28(9): 094208.
[12] Role of Bloch oscillation in high-order harmonic generation from periodic structure
Lu Liu(刘璐), Jing Zhao(赵晶), Jian-Min Yuan(袁建民), Zeng-Xiu Zhao(赵增秀). Chin. Phys. B, 2019, 28(11): 114205.
[13] High-order harmonic generation of Li+ with combined infrared and extreme ultraviolet fields
Li Wang(王力), Guo-Li Wang(王国利), Zhi-Hong Jiao(焦志宏), Song-Feng Zhao(赵松峰), Xiao-Xin Zhou(周效信). Chin. Phys. B, 2018, 27(7): 073205.
[14] Isolated attosecond pulse generation with few-cycle two-color counter-rotating circularly polarized laser pulses
Jin-Song Wu(吴劲松), Zheng-Mao Jia(贾正茂), Zhi-Nan Zeng(曾志男). Chin. Phys. B, 2017, 26(9): 093201.
[15] Effects of dispersion and filtering induced by periodic multilayer mirrors reflection on attosecond pulses
Cheng-You Lin(林承友), Liang Yin(尹亮), Shu-Jing Chen(陈淑静), Zhao-Yang Chen(陈朝阳), Ying-Chun Ding(丁迎春). Chin. Phys. B, 2016, 25(9): 097802.
No Suggested Reading articles found!