Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(8): 080305    DOI: 10.1088/1674-1056/21/8/080305
GENERAL Prev   Next  

Entanglement evolution of three-qubit mixed states in multipartite cavity–reservoir systems

Xu Jing-Zhou (许景周)a, Guo Jin-Bao (郭金宝)a, Wen Wei (文伟)b, Bai Yan-Kui (白彦魁)a, Yan Feng-Li (闫凤利 )a
a College of Physical Science and Information Engineering and Hebei Advance Thin Films Laboratory, Hebei Normal University, Shijiazhuang 050016, China;
b State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P. O. Box 912, Beijing 100083, China
Abstract  We analyze the multipartite entanglement evolution of three-qubit mixed states composed of a GHZ state and a W state. For a composite system consisting of three cavities interacting with independent reservoirs, it is shown that the entanglement evolution is restricted by a set of monogamy relations. Furthermore, as quantified by the negativity, the entanglement dynamical property of the mixed entangled state of cavity photons is investigated. It is found that the three cavity photons can exhibit the phenomenon of entanglement sudden death (ESD). However, compared with the evolution of a generalized three-qubit GHZ state which has the equal initial entanglement, the ESD time of mixed states is latter than that of the pure state. Finally, we discuss the entanglement distribution in the multipartite system, and point out the intrinsic relation between the ESD of cavity photons and the entanglement sudden birth of reservoirs.
Keywords:  entanglement evolution      three-qubit mixed states      cavity-reservoir systems  
Received:  02 February 2012      Revised:  22 February 2012      Accepted manuscript online: 
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10905016 and 10971247), the Natural Science Foundation of Hebei Province of China (Grant Nos. A2012205062, A2012205013, and A2010000344), and the Fund of Hebei Normal University.
Corresponding Authors:  Bai Yan-Kui, Yan Feng-Li     E-mail:  ykbai@semi.ac.cn; flyan@hebtu.edu.cn

Cite this article: 

Xu Jing-Zhou (许景周), Guo Jin-Bao (郭金宝), Wen Wei (文伟), Bai Yan-Kui (白彦魁), Yan Feng-Li (闫凤利 ) Entanglement evolution of three-qubit mixed states in multipartite cavity–reservoir systems 2012 Chin. Phys. B 21 080305

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[3] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[4] Coffman V, Kundu J and Wootters W K 2000 Phys. Rev. A 61 052306
[5] Lohmayer R, Osterloh A, Siewert J and Uhlmann A 2006 Phys. Rev. Lett. 97 260502
[6] Bai Y K, Ye M Y and Wang Z D 2008 Phys. Rev. A 78 062325
[7] Zyczkowski K, Horodecki P, Horodecki M and Horodecki R 2001 Phys. Rev. A 65 012101
[8] Rajagopal A K and Rendell R W 2001 Phys. Rev. A 63 022116
[9] Scheel S, Eisert J, Knight P L and Plenio M B 2003 J. Mod. Opt. 50 881
[10] Yu T and Eberly J H 2006 Phys. Rev. Lett. 97 140403
[11] Almeida M P, de Melo F, Hor-Meyll M, Salles A, Walborn S P, Souto Ribeiro P H and Davidovich L 2007 Science 316 579
[12] Laurat J, Choi K S, Deng H, Chou C W and Kimble H J 2007 Phys. Rev. Lett. 99 180504
[13] Yu T and Eberly J H 2009 Science 323 598
[14] López C E, Romero G, Lastra F, Solano E and Retamal J C 2008 Phys. Rev. Lett. 101 080503
[15] Bai Y K, Ye M Y and Wang Z D 2009 Phys. Rev. A 80 044301
[16] Wen W, Bai Y K and Fan H 2011 Eur. Phys. J. D 64 557
[17] Osborne T J and Verstraete F 2006 Phys. Rev. Lett. 96 220503
[18] Vidal G and Werner R 2002 Phys. Rev. A 65 032314
[19] Chen K, Albeverio S and Fei S M Phys. Rev. Lett. 95 040504
[20] Ou Y C and Fan H 2007 Phys. Rev. A 75 062308
[21] Ou Y C 2007 Phys. Rev. A 75 034305
[22] Kim J S, Das A and Sanders B C 2009 Phys. Rev. A 79 012329
[23] Bai Y K, Yang D and Wang Z D 2007 Phys. Rev. A 76 022336
[24] Bai Y K and Wang Z D 2008 Phys. Rev. A 77 032313
[25] Eltschka C, Osterloh A, Siewert J and Uhlmann A 2008 New J. Phys. 10 043014
[26] Bellomo B, Lo Franco R and Compagno G 2007 Phys. Rev. Lett. 99 160502
[27] An J H and Zhang W M 2007 Phys. Rev. A 76 042127
[28] Altintas F and Eryigit R 2010 Phys. Lett. A 372 4283
[29] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
[30] Li S S, Long G L, Bai F S, Feng S L and Zheng H Z 2001 Proc. Natl. Acad. Sci. USA 98 11847
[31] Wang X and Wang Z D 2006 Phys. Rev. A 73 064302
[1] Entanglement evolution in an anisotropic two-qubit Heisenberg XYZ model with Dzyaloshinskii-Moriya interaction
Chen Tao(陈涛), Huang Yan-Xia(黄燕霞), Shan Chuan-Jia(单传家), Li Jin-Xing(李金星), Liu Ji-Bing(刘继兵), and Liu Tang-Kun(刘堂昆). Chin. Phys. B, 2010, 19(5): 050302.
[2] Effects of inhomogeneous couplings between atoms and acavity field on entanglement dynamics
Guo Jin-Liang(郭金良), Xia Yan(夏岩), and Song He-Shan(宋鹤山). Chin. Phys. B, 2010, 19(1): 010310.
[3] Entanglement evolution and transfer in a double Tavis--Cumming model in cavity QED
Xu Qing-Jun(徐庆君) and Zhang Shi-Ying(张士英). Chin. Phys. B, 2009, 18(10): 4117-4121.
No Suggested Reading articles found!