Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(8): 087101    DOI: 10.1088/1674-1056/21/8/087101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic and structural properties of N-vacancy in AlN nanowires: A first-principles study

Qiao Zhi-Juan (乔志娟)a, Chen Guang-De (陈光德)a, Ye Hong-Gang (耶红刚)a, Wu Ye-Long (伍叶龙)a, Niu Hai-Bo (牛海波)a, Zhu You-Zhang (竹有章 )b
a Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China;
b Department of Electronic Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  The stability and electronic structures of AlN nanowires with and without N-vacancy are investigated by using the first-principles calculations. We find that there is an inverse correlation between formation energy and diameter in ideal AlN nanowires. After calculating the formation energies of N-vacancy at different sits in AlN nanowires with different diameters, we obtain that the N-vacancy prefers to stay at the surface of the nanowires and it is easier to fabricate under Al-rich condition. Through studying the electronic properties of the AlN nanowires with N-vacancies, we further find that there are two isolated bands in the deep part of the band gap, one of them is fully occupied and the other is half occupied. The charge density indicates that the half-fully occupied band arises from the Al at surface, and this atom becomes an active centre.
Keywords:  AlN nanowires      vacancy      first-principles  
Received:  08 December 2011      Revised:  10 February 2012      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  73.20.At (Surface states, band structure, electron density of states)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11074200 and 61176079) and the Natural Science Fund of Shaanxi Province, China (Grant No. 2009JM1005)
Corresponding Authors:  Qiao Zhi-Juan     E-mail:  qzj007@stu.xjtu.edu.cn

Cite this article: 

Qiao Zhi-Juan (乔志娟), Chen Guang-De (陈光德), Ye Hong-Gang (耶红刚), Wu Ye-Long (伍叶龙), Niu Hai-Bo (牛海波), Zhu You-Zhang (竹有章 ) Electronic and structural properties of N-vacancy in AlN nanowires: A first-principles study 2012 Chin. Phys. B 21 087101

[1] Xu C K, Xue L and Yin C R 2003 Phys. Status Solidi A: Appl. Res. 198 329
[2] Zhang D J and Zhang R Q 2003 Chem. Phys. Lett. 371 426
[3] Doi K, Higashimaki N and KawakamI Y 2004 Phys. Status Solidi B: Basic Solid State Phys. 241 2806
[4] Du A J, Zhu Z H and Chen Y 2009 Chem. Phys. Lett. 469 183
[5] Fritsch J, Sankey O F and Schmidt K E 1998 Phys. Rev. B 57 15360
[6] Wu Y L, Chen G D and Ye H G 2008 J. Appl. Phys. 104 115349
[7] Ye H G, Chen G D and Wu Y L 2009 Phys. Rev. B 80 033301
[8] Chen H, Lu X K and Zhou S Q 2001 Mod. Phys. Lett. B 15 1455
[9] Shen L H, Cheng T M and Wu L J 2008 J. Alloys Compd. 465 562
[10] Wu H M and Liang J Y 2009 Ferroelectrics 383 95
[11] Li Z J, Tian M and He L L 2011 Acta Phys. Sin. 60 098101 (in Chinese)
[12] Rezouali K, Belkhir M A and Bai J B 2010 J. Phys. Chem. C 114 11352
[13] Wu H M and Liang J Y 2010 3rd International Nanoelectronics Conference January 3-8, 2010, Hong Kong, China 1 p. 795
[14] Wu Y L, Chen G D and Ye H G 2009 Appl. Phys. Lett. 94 253101
[15] Wang Q, Sun Q and Chen G 2008 Phys. Rev. B 77 205411
[16] Yang X, Wolcott A and Wang G 2009 Nano Lett. 9 2331
[17] Carter D J and Stampfl C 2009 Phys. Rev. B 79 195302
[18] Hung A, Russo S P and Mcculloch D G 2004 J. Chem. Phys. 120 4890
[19] Ye H G, Chen G D and Zhu Y Z 2007 Acta Phys. Sin. 56 5376 (in Chinese)
[20] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[21] Blochl P E 1994 Phys. Rev. B 50 17953
[22] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[23] Lu Y H, Russo S P and Feng Y P 2011 Phys. Chem. Chem. Phys. 13 15973
[24] Zhao M W, Xia Y Y and Liu X D 2006 J. Phys. Chem. B 110 8764
[25] Stampfl C and Van de Walle C G 2002 Phys. Rev. B 65 155212
[26] Ye H G, Chen G D and Zhu Y Z 2007 Chin. Phys. 16 3803
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[3] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[6] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[7] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[8] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[9] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[10] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[11] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[12] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[13] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[14] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[15] Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study
Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍). Chin. Phys. B, 2022, 31(5): 056105.
No Suggested Reading articles found!