Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(8): 087101    DOI: 10.1088/1674-1056/21/8/087101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic and structural properties of N-vacancy in AlN nanowires: A first-principles study

Qiao Zhi-Juana, Chen Guang-Dea, Ye Hong-Ganga, Wu Ye-Longa, Niu Hai-Boa, Zhu You-Zhangb
a Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China;
b Department of Electronic Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  The stability and electronic structures of AlN nanowires with and without N-vacancy are investigated by using the first-principles calculations. We find that there is an inverse correlation between formation energy and diameter in ideal AlN nanowires. After calculating the formation energies of N-vacancy at different sits in AlN nanowires with different diameters, we obtain that the N-vacancy prefers to stay at the surface of the nanowires and it is easier to fabricate under Al-rich condition. Through studying the electronic properties of the AlN nanowires with N-vacancies, we further find that there are two isolated bands in the deep part of the band gap, one of them is fully occupied and the other is half occupied. The charge density indicates that the half-fully occupied band arises from the Al at surface, and this atom becomes an active centre.
Keywords:  AlN nanowires      vacancy      first-principles  
Received:  08 December 2011      Revised:  10 February 2012      Published:  01 July 2012
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  73.20.At (Surface states, band structure, electron density of states)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11074200 and 61176079) and the Natural Science Fund of Shaanxi Province, China (Grant No. 2009JM1005)
Corresponding Authors:  Qiao Zhi-Juan     E-mail:  qzj007@stu.xjtu.edu.cn

Cite this article: 

Qiao Zhi-Juan, Chen Guang-De, Ye Hong-Gang, Wu Ye-Long, Niu Hai-Bo, Zhu You-Zhang Electronic and structural properties of N-vacancy in AlN nanowires: A first-principles study 2012 Chin. Phys. B 21 087101

[1] Xu C K, Xue L and Yin C R 2003 Phys. Status Solidi A: Appl. Res. 198 329
[2] Zhang D J and Zhang R Q 2003 Chem. Phys. Lett. 371 426
[3] Doi K, Higashimaki N and KawakamI Y 2004 Phys. Status Solidi B: Basic Solid State Phys. 241 2806
[4] Du A J, Zhu Z H and Chen Y 2009 Chem. Phys. Lett. 469 183
[5] Fritsch J, Sankey O F and Schmidt K E 1998 Phys. Rev. B 57 15360
[6] Wu Y L, Chen G D and Ye H G 2008 J. Appl. Phys. 104 115349
[7] Ye H G, Chen G D and Wu Y L 2009 Phys. Rev. B 80 033301
[8] Chen H, Lu X K and Zhou S Q 2001 Mod. Phys. Lett. B 15 1455
[9] Shen L H, Cheng T M and Wu L J 2008 J. Alloys Compd. 465 562
[10] Wu H M and Liang J Y 2009 Ferroelectrics 383 95
[11] Li Z J, Tian M and He L L 2011 Acta Phys. Sin. 60 098101 (in Chinese)
[12] Rezouali K, Belkhir M A and Bai J B 2010 J. Phys. Chem. C 114 11352
[13] Wu H M and Liang J Y 2010 3rd International Nanoelectronics Conference January 3-8, 2010, Hong Kong, China 1 p. 795
[14] Wu Y L, Chen G D and Ye H G 2009 Appl. Phys. Lett. 94 253101
[15] Wang Q, Sun Q and Chen G 2008 Phys. Rev. B 77 205411
[16] Yang X, Wolcott A and Wang G 2009 Nano Lett. 9 2331
[17] Carter D J and Stampfl C 2009 Phys. Rev. B 79 195302
[18] Hung A, Russo S P and Mcculloch D G 2004 J. Chem. Phys. 120 4890
[19] Ye H G, Chen G D and Zhu Y Z 2007 Acta Phys. Sin. 56 5376 (in Chinese)
[20] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[21] Blochl P E 1994 Phys. Rev. B 50 17953
[22] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[23] Lu Y H, Russo S P and Feng Y P 2011 Phys. Chem. Chem. Phys. 13 15973
[24] Zhao M W, Xia Y Y and Liu X D 2006 J. Phys. Chem. B 110 8764
[25] Stampfl C and Van de Walle C G 2002 Phys. Rev. B 65 155212
[26] Ye H G, Chen G D and Zhu Y Z 2007 Chin. Phys. 16 3803
[1] First-principles analysis of phonon thermal transport properties of two-dimensional WS2/WSe2 heterostructures
Zheng Chang(常征), Kunpeng Yuan(苑昆鹏), Zhehao Sun(孙哲浩), Xiaoliang Zhang(张晓亮), Yufei Gao(高宇飞), Xiaojing Gong(弓晓晶), and Dawei Tang(唐大伟). Chin. Phys. B, 2021, 30(3): 034401.
[2] Structural, mechanical, electronic properties, and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure: A first-principles study
Diyou Jiang(姜迪友), Wenbo Xiao(肖文波), and Sanqiu Liu(刘三秋). Chin. Phys. B, 2021, 30(3): 036202.
[3] A first-principles study on zigzag phosphorene nanoribbons terminated by transition metal atoms
Shuai Yang(杨帅), Zhiyong Wang(王志勇), Xueqiong Dai(戴学琼), Jianrong Xiao(肖剑荣), and Mengqiu Long(龙孟秋). Chin. Phys. B, 2021, 30(2): 027305.
[4] First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst
Jia Shi(史佳), Lei Wang(王蕾), and Qiang Gu(顾强). Chin. Phys. B, 2021, 30(2): 026301.
[5] Enhanced mobility of MoS2 field-effect transistors by combining defect passivation with dielectric-screening effect
Zhao Li(李钊), Jing-Ping Xu(徐静平), Lu Liu(刘璐), and Xin-Yuan Zhao(赵心愿). Chin. Phys. B, 2021, 30(1): 018102.
[6] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[7] Quantum plasmons in the hybrid nanostructures of double vacancy defected graphene and metallic nanoarrays
Rui Tang(唐睿), Yang Xu(徐阳), Hong Zhang(张红), and Xin-Lu Cheng(程新路). Chin. Phys. B, 2021, 30(1): 017804.
[8] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
[9] Temperature-induced phase transition of two-dimensional semiconductor GaTe
Xiaoyu Wang(王啸宇), Xue Wang(王雪), Hongshuai Zou(邹洪帅), Yuhao Fu(付钰豪), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2021, 30(1): 016402.
[10] Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles
Chun-Ying Pu(濮春英), Rong-Mei Yu(于荣梅), Ting Wang(王婷), Zhen-Yan X\"ue(薛振彦), Yong-Sheng Zhu(朱永胜), and Da-Wei Zhou(周大伟). Chin. Phys. B, 2021, 30(1): 017102.
[11] Surface-regulated triangular borophene as Dirac-like materials from density functional calculation investigation
Wenyu Fang(方文玉), Wenbin Kang(康文斌), Jun Zhao(赵军), Pengcheng Zhang(张鹏程). Chin. Phys. B, 2020, 29(9): 096301.
[12] Raman and infrared spectra of complex low energy tetrahedral carbon allotropes from first-principles calculations
Hui Wang(王翚), Ze-Yu Zhang(张泽宇), Xiao-Wu Cai(蔡小五), Zi-Han Liu(刘子晗), Yong-Xiang Zhang(张永翔), Zhen-Long Lv(吕珍龙), Wei-Wei Ju(琚伟伟), Hui-Hui Liu(刘汇慧), Tong-Wei Li(李同伟), Gang Liu(刘钢), Hai-Sheng Li(李海生), Hai-Tao Yan(闫海涛), Min Feng(冯敏). Chin. Phys. B, 2020, 29(9): 093601.
[13] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[14] Two-dimensional hexagonal Zn3Si2 monolayer: Dirac cone material and Dirac half-metallic manipulation
Yurou Guan(官雨柔), Lingling Song(宋玲玲), Hui Zhao(赵慧), Renjun Du(杜仁君), Liming Liu(刘力铭), Cuixia Yan(闫翠霞), Jinming Cai(蔡金明). Chin. Phys. B, 2020, 29(8): 087103.
[15] Selective linear etching of monolayer black phosphorus using electron beams
Yuhao Pan(潘宇浩), Bao Lei(雷宝), Jingsi Qiao(乔婧思), Zhixin Hu(胡智鑫), Wu Zhou(周武), Wei Ji(季威). Chin. Phys. B, 2020, 29(8): 086801.
No Suggested Reading articles found!