Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(5): 050508    DOI: 10.1088/1674-1056/21/5/050508
GENERAL Prev   Next  

Pinning synchronization of time-varying delay coupled complex networks with time-varying delayed dynamical nodes

Wang Shu-Guo(王树国)a)b)† and Yao Hong-Xing(姚洪兴)b)
a. Department of Mathematics and Physics, Changzhou Campus, Hohai University, Changzhou 213022, China;
b. School of Finance & Economics, Jiangsu University, Zhenjiang 212013, China
Abstract  This paper deals with the pinning synchronization of nonlinearly coupled complex networks with time-varying coupling delays and time-varying delays in the dynamical nodes. We control a part of the nodes of the complex networks by using adaptive feedback controllers and adjusting the time-varying coupling strengths. Based on the Lyapunov--Krasovskii stability theory for functional differential equations and a linear matrix inequality (LMI), some sufficient conditions for the synchronization are derived. A numerical simulation example is also provided to verify the correctness and the effectiveness of the proposed scheme.
Keywords:  complex networks      adaptive feedback controllers      time-varying delays      pinning controllers  
Received:  27 July 2011      Revised:  27 April 2012      Accepted manuscript online: 
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Gg (Control of chaos, applications of chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 70871056) and the Six Talents Peak Foundation of Jiangsu Province, China (Grant No. 2010-JY70-025).

Cite this article: 

Wang Shu-Guo(王树国) and Yao Hong-Xing(姚洪兴) Pinning synchronization of time-varying delay coupled complex networks with time-varying delayed dynamical nodes 2012 Chin. Phys. B 21 050508

[1] Strogatz S H 2001 Nature 410 268
[2] Barab醩i A L and Albert R 1999 Science 286 509
[3] Dorogovtesev S N and Mendes J F F 2002 Adv. Phys. 51 1079
[4] Newman M E J 2003 SIAM Review 45 167
[5] Boccaletti S, Latora V, Moreno Y, Chavez M and Hwang D U 2006 Physics Reports 424 175
[6] Lu J, Ho D W C and Liu M 2007 Phys. Lett. A 369 444
[7] Li K, Guan S G, Gong X F and Lai C H 2008 Phys. Lett. A 372 7133
[8] Liu H, Chen J, Lu J and Cao M 2010 Physica A 389 1759
[9] Rosenblum M G, Pikovsky A S and Kurths J 1996 Phys. Rev. Lett. 76 1804
[10] Rosenblum M G, Pikovsky A S and Kurths J 1997 Phys. Rev. Lett. 78 4193
[11] Zhang R, Yang Y Q, Xu Z Y and Hu M F 2010 Phys. Lett. A 374 3025
[12] L? L, Meng L, Guo L, Zou J R and Yang M 2011 Acta Phys. Sin. 60 124 (in Chinese)
[13] Abdurahman K, Wang X Y and Zhao Y Z 2011 Acta Phys. Sin. 60 81 (in Chinese)
[14] Zhou J, Lu J and L? J 2006 IEEE Trans. Automat. Control 51 652
[15] Pan L, Zhou W N, Fang J A and Li D Q 2010 Commun. Nonlinear Sci. Numer. Simulat. 15 3754
[16] Guo L X, Hu M F and Xu Z Y 2010 Chin. Phys. B 19 020512
[17] Yang L B and Yang T 2000 Acta Phys. Sin. 49 33 (in Chinese)
[18] Chen J F, Zhang R Y and Peng J H 2003 Acta Phys. Sin. 52 1589 (in Chinese)
[19] Ma T D, Zhang H G and Wang Z L 2007 Acta Phys. Sin. 56 3796 (in Chinese)
[20] Guo L X, Hu M F and Xu Z Y 2010 Chin. Phys. B 19 020512
[21] Wang S G and Yao H X 2011 Chin. Phys. B 20 9 090513
[22] Syntetos A A and Boylan J E 2006 International Journal of Production Economics 103 36
[23] Cai S M, Hao J J, He Q B and Liu Z G 2011 Phys. Lett. A 375 1965
[24] Li H Q, Liao X F and Huang H Y 2011 Acta Phys. Sin. 60 020512 (in Chinese)
[25] Liu F C, Li J Y and Zang X F 2011 Acta Phys. Sin. 60 030504 (in Chinese)
[26] Liu T 2009 Chaos Solition Fract. 40 1506
[27] Wang X and Chen G 2002 Physica A 310 521
[28] Li X, Wang X and Chen G 2004 IEEE Trans. Circuits Syst. I 51 2074
[29] Chen T, Liu X and Lu W 2007 IEEE Trans. Circuits Syst. I 54 1317
[30] Guo W L, Austin F, Chen S H and Sun W 2009 Phys. Lett. A 373 1565
[31] Yu W W, Chen G R and Lue J H 2009 Automatic 45 429
[32] Wu C W 2008 IEEE Int. Symposium on Circuits and Systems 2530
[33] Zhou J, Lu J A and L? J H 2008 Automatica 44 996
[34] Lu J, Ho D W C and Wang Z 2009 IEEE Trans. Neural Networks 20 1617
[35] Song Q and Cao J 2010 IEEE Trans. Circuits Syst. I 57 672
[36] Kolmanovskii V B and Myshkis A D 1999 Introduction to the Theory and Applications of Functional Differential Equations (Dordrecht:Kluwer Academic Publishers)
[37] Hale J K and Lunel S M V 1993 Introduction to Functional Differential Equations (New York:Springer)
[38] Zuo Z Q, Yang C L and Wang Y J 2010 Phys. Lett. A 374 1989
[39] Zhou J and Chen T P 2006 IEEE Trans. Circ. Syst. I 53 733
[40] Hu C, Yu J, Jiang H J and Teng Z D 2011 Phys. Lett. A 375 873
[41] Liu H, Chen J, Lu J A and Cao M 2010 Physica A 389 1759
[1] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[2] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[3] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[4] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[5] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[6] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
[7] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[8] Exploring individuals' effective preventive measures against epidemics through reinforcement learning
Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni (倪顺江), and Shi-Fei Shen(申世飞). Chin. Phys. B, 2021, 30(4): 048901.
[9] Influential nodes identification in complex networks based on global and local information
Yuan-Zhi Yang(杨远志), Min Hu(胡敏), Tai-Yu Huang(黄泰愚). Chin. Phys. B, 2020, 29(8): 088903.
[10] Identifying influential spreaders in complex networks based on entropy weight method and gravity law
Xiao-Li Yan(闫小丽), Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni(倪顺江). Chin. Phys. B, 2020, 29(4): 048902.
[11] Modeling and analysis of the ocean dynamic with Gaussian complex network
Xin Sun(孙鑫), Yongbo Yu(于勇波), Yuting Yang(杨玉婷), Junyu Dong(董军宇)†, Christian B\"ohm, and Xueen Chen(陈学恩). Chin. Phys. B, 2020, 29(10): 108901.
[12] Pyramid scheme model for consumption rebate frauds
Yong Shi(石勇), Bo Li(李博), Wen Long(龙文). Chin. Phys. B, 2019, 28(7): 078901.
[13] Theoretical analyses of stock correlations affected by subprime crisis and total assets: Network properties and corresponding physical mechanisms
Shi-Zhao Zhu(朱世钊), Yu-Qing Wang(王玉青), Bing-Hong Wang(汪秉宏). Chin. Phys. B, 2019, 28(10): 108901.
[14] Coordinated chaos control of urban expressway based on synchronization of complex networks
Ming-bao Pang(庞明宝), Yu-man Huang(黄玉满). Chin. Phys. B, 2018, 27(11): 118902.
[15] Detecting overlapping communities based on vital nodes in complex networks
Xingyuan Wang(王兴元), Yu Wang(王宇), Xiaomeng Qin(秦小蒙), Rui Li(李睿), Justine Eustace. Chin. Phys. B, 2018, 27(10): 100504.
No Suggested Reading articles found!