Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(3): 030309    DOI: 10.1088/1674-1056/21/3/030309
GENERAL Prev   Next  

Dispersion relation of excitation mode in spin-polarized Fermi gas

Liu Ke(刘可) and Chen Ji-Sheng(陈继胜)
Department of Physics and Institute of Particle Physics, Central China Normal University, Wuhan 430079, China
Abstract  We study the dispersion relation of the excitation mode in a spin-polarized Fermi gas. In the frame of the imaginary-time finite temperature field theory, the polarization tensor is calculated by taking the random phase approximation. The population imbalance effects on the dispersion relation of the excitation mode and the spin-spin correlation susceptibility are investigated. The numerical results in terms of the imbalance ratio indicate the polarization effects on the dispersion relation and susceptibility $\chi$.
Keywords:  dispersion relation      polarized fermions      polarization tensor  
Received:  04 August 2011      Revised:  09 October 2011      Accepted manuscript online: 
PACS:  03.75.Ss (Degenerate Fermi gases)  
  05.30.Fk (Fermion systems and electron gas)  
  67.85.Lm (Degenerate Fermi gases)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10875050 and 11178001).
Corresponding Authors:  Liu Ke,liuke@phy.ccnu.edu.cn     E-mail:  liuke@phy.ccnu.edu.cn

Cite this article: 

Liu Ke(刘可) and Chen Ji-Sheng(陈继胜) Dispersion relation of excitation mode in spin-polarized Fermi gas 2012 Chin. Phys. B 21 030309

[1] Giorgini S, Pitaevskii L P and Stringari S 2008 Rev. Mod. Phys. 80 1215
[2] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
[3] Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225
[4] Nozi`eres P and Schmitt-Rink S 1985 J. Low Temp. Phys. 59 195
[5] Chin C, Bartenstein M, Altmeyer A, Riedl S, Jochim S, Denschlag J H and Grimm R 2004 Science 305 1128
[6] Kinnunen J, Rodríguez M and Törmä P 2004 Science 305 1131
[7] Heiselberg H 2001 Phys. Rev. A 63 043606
[8] Ho T L 2004 Phys. Rev. Lett. 92 090402
[9] Cao C, Elliott E, Joseph J, Wu H, Petricka J, Schäfer T and Thomas J E 2011 Science 331 58
[10] Chen J S, Li J R, Wang Y P and Xia X J 2008 J. Stat. Mech. P12008
[11] Partridge G B, Li W H, Kamar R I, Liao Y A and Hulet R G 2006 Science 311 503
[12] Chen J S, Cheng C M, Li J R and Wang Y P 2007 Phys. Rev. A 76 033617
[13] Chen J S 2007 Chin. Phy. Lett. 24 1825
[14] Chen J S 2007 Commun. Theor. Phys. 48 99
[15] Chen J S, Qin F and Wang Y P 2009 Science in China G 52 1324
[16] Liu K and Chen J S 2011 Chin. Phys. B 20 020501
[17] Fetter A L and Walecka J D 1971 Quantum Theory of Many-Particle Systems (New York: McGraw-Hill)
[18] Wang Y P and Chen J S 2008 Chin. Phy. B 17 4401
[19] Yu Z Q and Yin L 2010 Phys. Rev. A 80 013605
[20] Hao Y J 2011 Chin. Phy. B 20 060307
[21] Chevy F and Mora C 2010 Rep. Prog. Phys. 73 112401
[22] Pilati S and Giorgini S 2008 Phys. Rev. Lett. 100 030401
[23] Parish M M, Marchetti F M, Lamacraft A and Simons B D 2007 Nat. Phys. 3 124
[24] Zwierlein M W, Schirotzek A, Schunck C H and Ketterle W 2006 Science 311 492
[25] Pathria R K Statistical Mechanics 1996 (2nd Edn.) (Oxford: Butterworth-Heinemann)
[1] Kinetic Alfvén waves in a deuterium-tritium fusion plasma with slowing-down distributed α-particles
Fei-Fei Lu(路飞飞) and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(3): 035201.
[2] Phonon dispersion relations of crystalline solids based on LAMMPS package
Zhiyong Wei(魏志勇), Tianhang Qi(戚天航), Weiyu Chen(陈伟宇), and Yunfei Chen(陈云飞). Chin. Phys. B, 2021, 30(11): 114301.
[3] Graphene's photonic and optoelectronic properties-A review
A J Wirth-Lima, P P Alves-Sousa, W Bezerra-Fraga. Chin. Phys. B, 2020, 29(3): 037801.
[4] Surface plasmon polariton waveguides with subwavelength confinement
Longkun Yang(杨龙坤), Pan Li(李盼), Hancong Wang(汪涵聪), Zhipeng Li(李志鹏). Chin. Phys. B, 2018, 27(9): 094216.
[5] Resonant surface plasmons of a metal nanosphere treated as propagating surface plasmons
Yu-Rui Fang(方蔚瑞), Xiao-Rui Tian(田小锐). Chin. Phys. B, 2018, 27(6): 067302.
[6] Spoof surface plasmon-based bandpass filter with extremely wide upper stopband
Xiaoyong Liu(刘小勇), Lei Zhu(祝雷), Yijun Feng(冯一军). Chin. Phys. B, 2016, 25(3): 034101.
[7] A k·p analytical model for valence band of biaxial strained Ge on (001) Si1-xGex
Wang Guan-Yu(王冠宇), Zhang He-Ming(张鹤鸣), Gao Xiang(高翔), Wang Bin(王斌), and Zhou ChunYu(周春宇) . Chin. Phys. B, 2012, 21(5): 057103.
[8] Dispersion relation of dust acoustic waves in metallic multi-walled carbon nanotubes
Ali Fathalian and Shahram Nikjo . Chin. Phys. B, 2012, 21(5): 057306.
[9] Effect of multicomponent dust grains in a cold quantum dusty plasma
Yang Xiu-Feng(杨秀峰), Wang Shan-Jin(王善进), Chen Jian-Min(陈建敏), Shi Yu-Ren(石玉仁), Lin Mai-Mai(林麦麦), and Duan Wen-Shan(段文山) . Chin. Phys. B, 2012, 21(5): 055202.
[10] Surface plasmon–polaritons on ultrathin metal films
Quan Jun(全军), Tian Ying(田英), Zhang Jun(张军), and Shao Le-Xi(邵乐喜) . Chin. Phys. B, 2011, 20(4): 047201.
[11] The surface plasmon polariton dispersion relations in a nonlinear-metal-nonlinear dielectric structure of arbitrary nonlinearity
Liu Bing-Can(刘炳灿), Yu Li(于丽), and Lu Zhi-Xin(逯志欣). Chin. Phys. B, 2011, 20(3): 037302.
[12] Effects of dust size distribution in ultracold quantum dusty plasmas
Qi Xue-Hong(祁学宏), Duan Wen-Shan(段文山), Chen Jian-Min(陈建敏), and Wang Shan-Jin(王善进) . Chin. Phys. B, 2011, 20(2): 025203.
[13] The dispersion relations for surface plasmon in a nonlinear–metal–nonlinear dielectric structure
Liu Bing-Can(刘炳灿), Yu Li(于丽), Lu Zhi-Xin(逯志欣), and Zhang Kai(张恺). Chin. Phys. B, 2010, 19(9): 097303.
[14] Wave growth rate in a cylindrical metal waveguide with ion-channel guiding of a relativistic electron beam
Li Hai-Rong(李海容), Tang Chang-Jian(唐昌建), and Wang Shun-Jin(王顺金). Chin. Phys. B, 2010, 19(12): 124101.
[15] Phonon dispersion relations and soft modes of 4? carbon nanotubes
Miao Ling(缪灵), Liu Hui-Jun(刘惠军), Hu Yi(胡懿), Zhou Xiang(周详), Hu Cheng-Zheng(胡承正), and Shi Jing(石兢). Chin. Phys. B, 2010, 19(1): 016301.
No Suggested Reading articles found!