Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(4): 040503    DOI: 10.1088/1674-1056/21/4/040503
GENERAL Prev   Next  

Exponential networked synchronization of master-slave chaotic systems with time-varying communication topologies

Yang Dong-Shenga,Liu Zhen-Weia,Zhao Yanb,Liu Zhao-Binga
1. College of Information Science and Engineering, Northeastern University, Shenyang 110004, China;
2. Department of Automatic Control Engineering, Shenyang Institute of Engineering, Shenyang 110136, China
Abstract  The networked synchronization problem of a class of master-slave chaotic systems with time-varying communication topologies is investigated in this paper. Based on algebraic graph theory and matrix theory, a simple linear state feedback controller is designed to synchronize the master chaotic system and the slave chaotic systems with a time-varying communication topology connection. The exponential stability of the closed-loop networked synchronization error system is guaranteed by applying Lyapunov stability theory. The derived novel criteria are in the form of linear matrix inequalities (LMIs), which are easy to examine and tremendously reduce the computation burden from the feedback matrices. This paper provides an alternative networked secure communication scheme which can be extended conveniently. An illustrative example is given to demonstrate the effectiveness of the proposed networked synchronization method.
Keywords:  exponential networked synchronization      master-slave chaotic systems      algebraic graph theory      communication topology  
Received:  11 August 2011      Revised:  19 October 2011      Published:  29 February 2012
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Gg (Control of chaos, applications of chaos)  
Fund: Project supported by the National Natural Science Foundation of China(Grant Nos.60904046,60972164,60974071,and60804006),the Special Fund for Basic Scientific Research of Central Colleges,Northeastern University,China(GrantNo.090604005),the Science and Technology Program of Shenyang(Grant No.F11-264-1-70),the Program for Liaoning Ex-cellent Talents in University(Grant No.LJQ2011137),and the Program for Liaoning Innovative Research Team in University(Grant No.LT2011019)
Corresponding Authors:  Yang Dong-Sheng,     E-mail:

Cite this article: 

Yang Dong-Sheng,Liu Zhen-Wei,Zhao Yan,Liu Zhao-Bing Exponential networked synchronization of master-slave chaotic systems with time-varying communication topologies 2012 Chin. Phys. B 21 040503

[1] Murray R M (ed.) 2003 Control in an Information Rich World: Report of the Panel on Future Directions in Control, Dynamics and Systems (Philadelphia: Society for Industrial and Applied Mathermatics) p. 1
[2] Saber R O and Murray R M 2004 IEEE Trans. Autom. Control 49 1520
[3] Chen F, Chen Z Q, Xiang L Y, Liu Z X and Yuan Z Z 2009 Automatica 45 1215
[4] Scardovi L and Sepulchre R 2009 Automatica 45 2257
[5] Ni W and Cheng D Z 2010 Systems & Control Letters 59 209
[6] Jadbabaie A, Lin J and Morse S 2003 IEEE Trans. Autom. Control 48 988
[7] Moreau L 2005 IEEE Trans. Autom. Control 50 169
[8] Stan G B and Sepulchre R 2007 IEEE Trans. Autom. Control 52 256
[9] Hong Y G, Hu J P and Gao L X 2006 Automatica 42 1177
[10] Hong Y G, Gao L X, Cheng D Z and Hu J P 2007 IEEE Trans. Autom. Control 52 943
[11] Ren W and Beard R W 2005 IEEE Trans. Autom. Control 50 655
[12] Liu Y and Passino K M 2006 IEEE Trans. Autom. Control 51 1734
[13] Chopra N and Spong M W 2009 IEEE Trans. Autom. Control 54 353
[14] Hale J K 1996 Journal of Dynamics and Differential Equations 9 1
[15] Pogromsky A 1998 Int. J. Bifur. Chaos 2 295
[16] Wang Y C, Zhang H G, Wang X Y and Yang D S 2010 IEEE Trans. Sys. Man. Cybern. B: em Cybern. 40 1468
[17] Zhang H G, Ma T D, Huang G B and Wang Z L 2010 IEEE Trans. Sys. Man. Cybern. B: Cybernetics 40 831
[18] Kocarev L and Parlitz U 1995 Phys. Rev. Lett. 74 5028
[19] Zhang H G, Xie Y H, Wang Z L and Zheng C D 2007 IEEE Trans. Neural Networks 18 1841
[20] Zhang H G, Huang W, Wang Z L and Chai T Y 2006 Phys. Lett. A 350 363
[21] Ma T D, Zhang H G and Fu J 2008 Chin. Phys. B 17 4407
[22] Zhang H G, Ma T D, Yu W and Fu J 2008 Chin. Phys. B 17 3616
[23] Wang Z S, Zhang H G and Wang Z L 2006 Acta Phys. Sin. 55 2687 (in Chinese)
[24] Ma T D and Fu J 2011 Chin. Phys. B 20 050511
[25] Zhang H G, Guan H X and Wang Z S 2007 Progress in Natural Science 17 687
[26] Wang X Y, Xu M and Zhang H G 2009 Int. J. Mod. Phys. B 23 5163
[27] Zhang H G, Ma T D, Yu W and Fu J 2008 Chin. Phys. B 17 3616
[28] Ma T D, Fu J and Sun Y 2010 Chin. Phys. B 19 090502
[29] Zhang H G, Fu J, Ma T D and Tong S C 2009 Chin. Phys. B 18 3325
[30] Zhang H G, Ma T D, Fu J and Tong S C 2009 Chin. Phys. B 18 3751
[31] Godsil C and Royle G 2001 Algebraic Graph Theory (New York: Springer-Verlag) p. 207
[32] Horn R A and Johnson C R 1985 Matrix Analysis (New York: Cambridge University Press)
[33] Lorenz E N 1963 J. Atmos. Sci. 20 130
[34] Chen G and Ueta T 1999 Int. J. Bifur. Chaos 9 1465
[35] Lü J and Chen G 2002 J. Atmos. Sci. 12 659
[1] Chaotic dynamics of complex trajectory and its quantum signature
Wen-Lei Zhao(赵文垒), Pengkai Gong(巩膨恺), Jiaozi Wang(王骄子), and Qian Wang(王骞). Chin. Phys. B, 2020, 29(12): 120302.
[2] Nonlinear resonances phenomena in a modified Josephson junction model
Pernel Nguenang, Sandrine Takam Mabekou, Patrick Louodop, Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2020, 29(12): 120501.
[3] A phononic rectifier based on carbon schwarzite host-guest system
Zhongwei Zhang(张忠卫), Yulou Ouyang(欧阳宇楼), Jie Chen(陈杰), and Sebastian Volz. Chin. Phys. B, 2020, 29(12): 124402.
[4] Dynamics and coherence resonance in a thermosensitive neuron driven by photocurrent
Ying Xu(徐莹), Minghua Liu(刘明华), Zhigang Zhu(朱志刚), Jun Ma(马军). Chin. Phys. B, 2020, 29(9): 098704.
[5] Quantum to classical transition induced by a classically small influence
Wen-Lei Zhao(赵文垒), Quanlin Jie(揭泉林). Chin. Phys. B, 2020, 29(8): 080302.
[6] Novel two-directional grid multi-scroll chaotic attractors based on the Jerk system
Peng-Fei Ding(丁鹏飞), Xiao-Yi Feng(冯晓毅), Cheng-Mao Wu(吴成茂). Chin. Phys. B, 2020, 29(10): 108202.
[7] Chaotic signal denoising algorithm based on sparse decomposition
Jin-Wang Huang(黄锦旺), Shan-Xiang Lv(吕善翔), Zu-Sheng Zhang(张足生), Hua-Qiang Yuan(袁华强). Chin. Phys. B, 2020, 29(6): 060505.
[8] Hidden attractors in a new fractional-order discrete system: Chaos, complexity, entropy, and control
Adel Ouannas, Amina Aicha Khennaoui, Shaher Momani, Viet-Thanh Pham, Reyad El-Khazali. Chin. Phys. B, 2020, 29(5): 050504.
[9] Asynchronism of the spreading dynamics underlying the bursty pattern
Tong Wang(王童), Ming-Yang Zhou(周明洋), Zhong-Qian Fu(付忠谦). Chin. Phys. B, 2020, 29(5): 058901.
[10] Nonlinear continuous bi-inductance electrical line with dissipative elements: Dynamics of the low frequency modulated waves
S M Ngounou, F B Pelap. Chin. Phys. B, 2020, 29(4): 040502.
[11] Novel Woods-Saxon stochastic resonance system for weak signal detection
Yong-Hui Zhou(周永辉), Xue-Mei Xu(许雪梅), Lin-Zi Yin(尹林子), Yi-Peng Ding(丁一鹏), Jia-Feng Ding(丁家峰), Ke-Hui Sun(孙克辉). Chin. Phys. B, 2020, 29(4): 040503.
[12] Dynamics of the plane and solitary waves in a Noguchi network: Effects of the nonlinear quadratic dispersion
S A T Fonkoua, M S Ngounou, G R Deffo, F B Pelap, S B Yamgoue, A Fomethe. Chin. Phys. B, 2020, 29(3): 030501.
[13] Dynamical response of a neuron-astrocyte coupling system under electromagnetic induction and external stimulation
Zhi-Xuan Yuan(袁治轩), Pei-Hua Feng(冯沛华), Meng-Meng Du(独盟盟), Ying Wu(吴莹). Chin. Phys. B, 2020, 29(3): 030504.
[14] Quantum-classical correspondence and mechanical analysis ofa classical-quantum chaotic system
Haiyun Bi(毕海云), Guoyuan Qi(齐国元), Jianbing Hu(胡建兵), Qiliang Wu(吴启亮). Chin. Phys. B, 2020, 29(2): 020502.
[15] Bifurcation and chaos characteristics of hysteresis vibration system of giant magnetostrictive actuator
Hong-Bo Yan(闫洪波), Hong Gao(高鸿), Gao-Wei Yang(杨高炜), Hong-Bo Hao(郝宏波), Yu Niu(牛禹), Pei Liu(刘霈). Chin. Phys. B, 2020, 29(2): 020504.
No Suggested Reading articles found!