Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(2): 028401    DOI: 10.1088/1674-1056/21/2/028401

An RLC interconnect analyzable crosstalk model considering self-heating effect

Zhu Zhang-Ming,Liu Shu-Bin
School of Microelectronics, Xidian University, Xi醤 710071, China
Abstract  According to the thermal profile of actual multilevel interconnects, in this paper we propose a temperature distribution model of multilevel interconnects and derive an analytical crosstalk model for the distributed resistance-inductance-capacitance (RLC) interconnect considering effect of thermal profile. According to the 65-nm complementary metal-oxide semiconductor (CMOS) process, we compare the proposed RLC analytical crosstalk model with the Hspice simulation results for different interconnect coupling conditions and the absolute error is within 6.5%. The computed results of the proposed analytical crosstalk model show that RCL crosstalk decreases with the increase of current density and increases with the increase of insulator thickness. This analytical crosstalk model can be applied to the electronic design automation (EDA) and the design optimization for nanometer CMOS integrated circuits.
Keywords:  multilevel interconnects      temperature distribution      RLC crosstalk  
Received:  08 July 2011      Revised:  21 September 2011      Accepted manuscript online: 
PACS:  84.30.-r (Electronic circuits)  
  84.30.Bv (Circuit theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60725415 and 60971066).
Corresponding Authors:  Zhu Zhang-Ming,     E-mail:

Cite this article: 

Zhu Zhang-Ming,Liu Shu-Bin An RLC interconnect analyzable crosstalk model considering self-heating effect 2012 Chin. Phys. B 21 028401

[1] Ajami A H, Banerjee K and Pedram M 2005 IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems 24 849
[2] Wang N L and Zhou R D 2004 J. Semicond. 25 1510
[3] Chiang T Y and Saraswat K C 2003 Proceedings of Symposium on VLSI Circuits, August 16-18, 2003, Kyoto, Japan p. 275
[4] Yang Y T, Leng P and Dong G 2008 J. Semicond. 29 1843
[5] Zhu Z M, Zhong B and Yang Y T 2010 Acta Phys. Sin. 59 4895 (in Chinese)
[6] Brajesh K K and Sankar S 2009 Int. J. Electron. 96 1095
[7] Payam H, Massoud P 2005 IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems 24 478
[8] Sun L L and Peng R 2004 4th International Conference on Microwave and Millimeter Wave Technology, May 23-25, 2004, Beijing, China p. 891
[9] Sachin S and Harin D P 2008 9th International Symposium on Quality Electronic Design, March 17-19, 2008, San Jose, USA p. 445
[10] Li S M, Lee C L and Su C C 2009 IEEE Trans. on Very Large Scale Integration Systems 27 306
[11] Zhu Z M, Wan D J and Yang Y T 2010 Chin. Phys. B 19 097803
[12] En Y F, Zhu Z M and Hao Y 2010 Chin. Phys. Lett. 27 078401
[13] Zhu Z M, Wan D J and Yang Y T 2010 IEEE Electron Dev. Lett. 31 641
[14] Semiconductor Industry Assocaition 2010 International Technology Roadmap for Semiconductors
[15] Andrews R V 1955 Chem. Engin. Prog. 51 67
[16] Predictive Technology Model (PTM) http://www.eas.linebreak ptm/
[1] Noise temperature distribution of superconducting hot electron bolometer mixers
Kang-Min Zhou(周康敏), Wei Miao(缪巍), Yue Geng(耿悦), Yan Delorme, Wen Zhang(张文), Yuan Ren(任远), Kun Zhang(张坤), Sheng-Cai Shi(史生才). Chin. Phys. B, 2020, 29(5): 058505.
[2] Flow characteristics of supersonic gas passing through a circular micro-channel under different inflow conditions
Guang-Ming Guo(郭广明), Qin Luo(罗琴), Lin Zhu(朱林), Yi-Xiang Bian(边义祥). Chin. Phys. B, 2019, 28(6): 064702.
[3] Thermal analysis of GaN-based laser diode mini-array
Jun-Jie Hu(胡俊杰), Shu-Ming Zhang(张书明), De-Yao Li(李德尧), Feng Zhang(张峰), Mei-Xin Feng(冯美鑫), Peng-Yan Wen(温鹏雁), Jian-Pin Liu(刘建平), Li-Qun Zhang(张立群), Hui Yang(杨辉). Chin. Phys. B, 2018, 27(9): 094208.
[4] Electrical and thermal characterization of near-surface electrical discharge plasma actuation driven by radio frequency voltage at low pressure
Zhen Yang(杨臻), Hui-Min Song(宋慧敏), Di Jin(金迪), Min Jia(贾敏), Kang Wang(王康). Chin. Phys. B, 2018, 27(8): 085205.
[5] Reconstruction model for temperature and concentration profiles of soot and metal-oxide nanoparticles in a nanofluid fuel flame by using a CCD camera
Guannan Liu(刘冠楠), Dong Liu(刘冬). Chin. Phys. B, 2018, 27(5): 054401.
[6] Efficient thermal analysis method for large scale compound semiconductor integrated circuits based on heterojunction bipolar transistor
Shi-Zheng Yang(杨施政), Hong-Liang Lv(吕红亮), Yu-Ming Zhang(张玉明), Yi-Men Zhang(张义门), Bin Lu(芦宾), Si-Lu Yan(严思璐). Chin. Phys. B, 2018, 27(10): 108101.
[7] Two-dimensional thermal illusion device with arbitrary shape based on complementary media
Ge Xia(夏舸), Wei Kou(寇蔚), Li Yang(杨立), Yong-Cheng Du(杜永成). Chin. Phys. B, 2017, 26(10): 104403.
[8] Simulation on effect of metal/graphene hybrid transparent electrode on characteristics of GaN light emitting diodes
Ming-Can Qian(钱明灿), Shu-Fang Zhang(张淑芳), Hai-Jun Luo(罗海军), Xing-Ming Long(龙兴明), Fang Wu(吴芳), Liang Fang(方亮), Da-Peng Wei(魏大鹏), Fan-Ming Meng(孟凡明), Bao-Shan Hu(胡宝山). Chin. Phys. B, 2017, 26(10): 104402.
[9] Thermal and induced flow characteristics of radio frequency surface dielectric barrier discharge plasma actuation at atmospheric pressure
Wei-long Wang(王蔚龙), Jun Li(李军), Hui-min Song(宋慧敏), Di Jin(金迪), Min Jia(贾敏), Yun Wu(吴云). Chin. Phys. B, 2017, 26(1): 015205.
[10] Determination of temperature distribution and control parameter in a two-dimensional parabolic inverse problem with overspecified data
Li Fu-Le, Zhang Hong-Qian. Chin. Phys. B, 2011, 20(10): 100201.
[11] A novel analytical thermal model for multilevel nano-scale interconnects considering the via effect
Zhu Zhang-Ming, Li Ru, Hao Bao-Tian, Yang Yin-Tang. Chin. Phys. B, 2009, 18(11): 4995-5000.
[12] Calculation of the heat deposition and temperature distribution of the target bombarded by high-energy protons using Monte Carlo simulation and finite element method
Du Jian-Hong, Liang Jiu-Qing, Yin Wen, Zhang Guo-Feng. Chin. Phys. B, 2003, 12(12): 1383-1385.
No Suggested Reading articles found!