Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(8): 080302    DOI: 10.1088/1674-1056/20/8/080302
GENERAL Prev   Next  

Entanglement dynamics of two qubits coupled by Heisenberg XY interaction under a nonuniform magnetic field in a spin bath

Zhou Feng-Xue(周凤雪)a), Zhang Li-Da(张理达) a), Qi Yi-Hong(祁义红)b), Niu Yue-Ping(钮月萍)a)†, Zhang Jing-Tao(张敬涛)a), and Gong Shang-Qing(龚尚庆) a)b)‡
a State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China; b Department of Physics, East China University of Science and Technology, Shanghai 200237, China
Abstract  This paper investigates the entanglement dynamics of a Heisenberg XY model for a two-spin system in the presence of a nonuniform magnetic field. The master equations and the concurrence evolution equations for the initial α state are derived and analysed. It is shown that for the symmetric initial α state, only the nonuniform field can play a role in entanglement dynamics while the uniform field and the bath will not play such a role. For the asymmetric α state, the nonuniform field leads to the beat pattern oscillation of the concurrence evolution. The inhomogeneity of the field can enhance the entanglement by suppressing the decoherence effects of both the spin—orbit interaction and the spin bath.
Keywords:  quantum entanglement      decoherence      qubits      Heisenberg model  
Received:  24 February 2011      Revised:  16 March 2011      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10874194, 60978013, and 60921004) and the International Cooperation Program from Science and Technology Commission of Shanghai Municipality (Grant No. 10530704800).

Cite this article: 

Zhou Feng-Xue(周凤雪), Zhang Li-Da(张理达), Qi Yi-Hong(祁义红), Niu Yue-Ping(钮月萍), Zhang Jing-Tao(张敬涛), and Gong Shang-Qing(龚尚庆) Entanglement dynamics of two qubits coupled by Heisenberg XY interaction under a nonuniform magnetic field in a spin bath 2011 Chin. Phys. B 20 080302

[1] Macchiavello C, Palma G M and Zeilinger A 2000 Quantum Computation and Quantum Information Theory (Singapore: World Scientific)
[2] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[3] Olmschenk S, Matsukevich D N, Maunz P, Hayes D, Duan L M and Monroe C 2009 Science 323 486
[4] Ekert A K 1991 Phys. Rev. Lett. 67 661
[5] Bennett C H 1992 Phys. Rev. Lett. 267 3121
[6] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[7] Nielsen M A 2001 Ph. D. thesis Quantum Information Theory (University of New Mexico)
[8] Zhang T, Chen P X and Li C Z 2009 Chin. Phys. B 18 1346
[9] Wu L A, Sarandy M S and Lidar D A 2004 Phys. Rev. Lett. 93 250404
[10] Albayrak E 2010 Chin. Phys. B 19 090319
[11] Lidar D A and Wu L A 2002 Phys. Rev. Lett. 88 017905
[12] Wu L A, Lidar D A and Friesen M 2004 Phys. Rev. Lett. 93 030501
[13] DiVincenzo D P, Bacon D, Kempe J, Burkard G and Whaley K B 2000 Nature bf408 339
[14] Semenov Y G and Kim K W 2003 Phys. Rev. B 67 073301
[15] Kane B E 1998 Nature 393 133
[16] Kamta G L and Starace A F 2002 Phys. Rev. Lett. 88 107901
[17] Sun Y, Chen Y G and Chen H 2001 Phys. Rev. A bf68 044301
[18] Li D C and Cao Z L 2008 Eur. Phys. J. D 50 207
[19] Lucamarini M, Paganelli S and Mancini S 2004 Phys. Rev. A bf69 062308
[20] Yuan X Z, Goan H S and Zhu K D 2007 Phys. Rev. B bf75 045331
[21] Rao D D B 2007 Phys. Rev. A 76 042312
[22] Ferraro E, Napoli A, Guccione M and Messina A 2009 Phys. Scr. T bf135 014032
[23] Wei Q, Yan Y and Li G X 2010 Acta Phys. Sin. bf59 4453 (in Chinese)
[24] Zhou F X, Niu Y P and Gong S Q Entanglement Dynamics of the Two-Qubit System in a Common Bath (submitted)
[25] Coish W A and Loss D 2004 Phys. Rev. B 70 195340
[26] Petta J R, Johnson A C, Taylor J M, Laird E A, Yacoby A, Lukin M D, Marcus C M, Hanson M P and Gossard A C 2005 Science bf309 2180
[27] Larson B E and Ehrenreich H 1989 Phys. Rev. B bf39 1747
[28] Cépas O, Kakurai K, Regnault L P, Ziman T, Boucher J P, Aso N, Nishi M, Kageyama H and Ueda Y 2001 Phys. Rev. Lett. 87 167205
[29] Wang L C, Yan J Y and Yi X X 2010 Chin. Phys. B 19 040512
[30] Dobrovitski V V, Taylor J M and Lukin M D 2006 Phys. Rev. B bf73 245318
[31] Cucchietti F M, Paz J P and Zurek W H 2005 Phys. Rev. B bf70 035311
[32] Zhang W X, Dobrovitski V V, Al-Hassanieh K A, Dagotto E and Harmon B N 2006 Phys. Rev. B bf74 205313
[33] Zhang W X, Konstantinidis N, Al-Hassanieh K A and Dobrovitski V V 2007 J. Phys.: Condens. Matter bf19 083202
[34] Yu T and Eberly J H 2003 Phys. Rev. B bf68 165322
[35] Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404
[36] Yu T and Eberly J H 2006 Phys. Rev. Lett. 97 140403
[37] Yu T and Eberly J H 2007 Quantum Infor. Comput. bf7 459
[38] Hill S and Wootters W K 1997 Phys. Rev. Lett. 78 5022
[39] Wootters W K 1998 Phys. Rev. Lett. bf 80 2245
[1] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[2] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[3] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[4] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[5] Green's function Monte Carlo method combined with restricted Boltzmann machine approach to the frustrated J1-J2 Heisenberg model
He-Yu Lin(林赫羽), Rong-Qiang He(贺荣强), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2022, 31(8): 080203.
[6] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[7] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
[8] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
[9] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[10] Ground-state phase diagram of the dimerizedspin-1/2 two-leg ladder
Cong Fu(傅聪), Hui Zhao(赵晖), Yu-Guang Chen(陈宇光), and Yong-Hong Yan(鄢永红). Chin. Phys. B, 2021, 30(8): 087501.
[11] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[12] Universal quantum control based on parametric modulation in superconducting circuits
Dan-Yu Li(李丹宇), Ji Chu(储继), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Shao-Xiong Li(李邵雄), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(7): 070308.
[13] Entanglement properties of GHZ and W superposition state and its decayed states
Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余). Chin. Phys. B, 2021, 30(6): 060301.
[14] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
[15] Magnetic excitations of diagonally coupled checkerboards
Tingting Yan(颜婷婷), Shangjian Jin(金尚健), Zijian Xiong(熊梓健), Jun Li(李军), and Dao-Xin Yao(姚道新). Chin. Phys. B, 2021, 30(10): 107505.
No Suggested Reading articles found!