Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(2): 024214    DOI: 10.1088/1674-1056/20/2/024214

Semiconductor optical amplifier used as regenerator for degraded differential phase-shift keying signals

Du Shu-Chenga, Xi Li-Xiab, Li Jian-Pingb, Xu Xiab, Zhang Xiao-Guangb
a College of Nucleus Science and Technology, Beijing Normal University, Beijing 100875, China; b Key Laboratory of Information Photonics and Optical Communications, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  Phase and amplitude regeneration are necessary for degraded differential phase-shift keying communication systems. This paper proposes a regenerator based on semiconductor optical amplifier for differential phase-shift keying signals. The key regeneration mechanism is theoretically analysed. The effectiveness of semiconductor optical amplifier based regenerator is demonstrated by comparing the bit error rate and eye diagrams before and after regeneration for 40-Gbit/s differential phase-shift keying 1080-km transmission systems. The results show that regeneration effects are very well. Bit error rate is less than 10-12 with the regenerator.
Keywords:  phase noise      differential phase-shift keying      regeneration      semiconductor optical amplifier  
Received:  14 June 2010      Revised:  03 November 2010      Published:  15 February 2011
PACS:  42.79.Sz (Optical communication systems, multiplexers, and demultiplexers?)  
  42.81.Wg (Other fiber-optical devices)  
  42.65.Sf (Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)  
Fund: Project supported by the Scientific Fund for Chinese Universities (Grant No. BUPT 2009RC0413), and the National "863" High Technology Projects (Grant No. 2009AA01Z224).

Cite this article: 

Xi Li-Xia, Li Jian-Ping, Du Shu-Cheng, Xu Xia, Zhang Xiao-Guang Semiconductor optical amplifier used as regenerator for degraded differential phase-shift keying signals 2011 Chin. Phys. B 20 024214

[1] Zhao F, Fu M X, Lu Y Q and Liu S H 2007 Chin. Phys. 16 11
[2] Lin Y M, Liang R S, Lu Y Q, Lu H, Guo J B and Liu S H 2007 Acta Phys. Sin. 56 3931 (in Chinese)
[3] Kim H and Gnauck A H 2003 IEEE Photon. Technol. Lett. 15 320
[4] Jansen S L, Borne D van den, Khoe G D, Waardt H de, Monsalve C C, Spalter S and Krummrich P M 2005 OFC2005 Th05
[5] Striegler A, Meissner M, Cvecek K, Sponsel K, Leuchs G and Schmauss B 2005 IEEE Photon. Technol. Lett. 17 639
[6] Croussore K, Kim C and Li G 2004 Opt. Lett. 28 2357
[7] Croussore K, Kim I, Han Y, Kim C and Li G 2005 Opt. Express 13 3945
[8] Xi L X, Tang X F, Wang S K and Zhang X G 2009 Acta Phys. Sin. 58 6243 (in Chinese)
[9] Devgan P S, Shin M, Grigoryan V S, Lasri J and Kumar P 2005 OFC2005 PDP34 endfootnotesize
[1] Broadrange tunable slow and fast light in quantum dot photonic crystal structure
Alireza Lotfian, Reza Yadipour, Hamed Baghban. Chin. Phys. B, 2017, 26(12): 124207.
[2] Monolithic CEO-stabilization scheme-based frequency comb from an octave-spanning laser
Zi-Jiao Yu(于子蛟), Hai-Nian Han(韩海年), Yang Xie(谢阳), Hao Teng(滕浩), Zhao-Hua Wang(王兆华), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2016, 25(4): 044205.
[3] Modeling and experimental studies of a side band power re-injection locked magnetron
Wen-Jun Ye(叶文军), Yi Zhang(张益), Ping Yuan(袁萍), Hua-Cheng Zhu(朱铧丞), Ka-Ma Huang(黄卡玛), Yang Yang(杨阳). Chin. Phys. B, 2016, 25(12): 128402.
[4] Photonic multi-shape UWB pulse generation using a semiconductor optical amplifier-based nonlinear optical loop mirror
Luo Bo-Wen, Dong Jian-Ji, Yu Yuan, Yang Ting, Zhang Xin-Liang. Chin. Phys. B, 2013, 22(2): 023201.
[5] Optimization of regenerator based on semiconductor optical amplifier for degraded differential phase shift keying signal
Ma Yong-Xin, Xi Li-Xia, Chen Guang, Zhang Xiao-Guang. Chin. Phys. B, 2012, 21(6): 064222.
[6] Photonic generation of power-efficient FCC-compliant ultra-wideband waveforms using semiconductor optical amplifier (SOA): theoretical analysis and experiment verification
Dong Jian-Ji,Luo Bo-Wen,Huang De-Xiu,Zhang Xin-Liang. Chin. Phys. B, 2012, 21(4): 043201.
[7] Stimulated Brillouin scattering-induced phase noise in an interferometric fiber sensing system
Chen Wei,Meng Zhou,Zhou Hui-Juan,Luo Hong. Chin. Phys. B, 2012, 21(3): 034212.
[8] Reconfigurable all-optical dual-directional half-subtractor for high-speed differential phase shift keying signal based on semiconductor optical amplifiers
Zhang Yin,Dong Jian-Ji,Lei Lei,Zhang Xin-Liang. Chin. Phys. B, 2012, 21(2): 024209.
[9] Investigation on performance of all optical buffer with large dynamical delay time based on cascaded double loop optical buffers
Wang Yong-Jun, Wu Chong-Qing, Xin Xiang-Jun, Yu Kuang-Lu, Zhang Xiao-Lei. Chin. Phys. B, 2010, 19(9): 094210.
[10] Measurement of the carrier recovery time in SOA based on four-wave mixing on narrow-band ASE spectrum
Cheng Cheng, Zhang Xin-Liang, Zhang Yu, Liu Lei, Huang De-Xiu. Chin. Phys. B, 2010, 19(10): 104206.
[11] 155~Mb/s--10~Gb/s combined FSK-IM/optical label-packet modulation signals 100~km transmission over standard single mode fiber using mid-span spectral inversion by four-wave mixing in an SOA
Xin Xiang-Jun, Ma Jian-Xin, Zhang Qi, Deng Chao-Gong, Wang Kui-Ru, Yu Chong-Xiu, Liu Bo. Chin. Phys. B, 2009, 18(8): 3449-3452.
[12] All-optical error-bit amplitude monitor based on NOT and AND gates in cascaded semiconductor optical amplifiers
Dong Jian-Ji, Zhang Xin-Liang, Huang De-Xiu. Chin. Phys. B, 2008, 17(11): 4226-4231.
[13] The scalability of the tunnel-regenerated multi-active-region light-emitting diode structure
Guo Xia, Shen Guang-Di. Chin. Phys. B, 2008, 17(1): 307-310.
[14] All-optical NOT and XOR logic operation at 2.5 Gb/s based on semiconductor optical amplifier loop mirror
Wang Ying, Zhang Xin-Liang, Huang De-Xiu. Chin. Phys. B, 2004, 13(6): 882-886.
Zhang Xin-liang, Huang De-xiu, Sun Jun-qiang, Liu De-ming. Chin. Phys. B, 2001, 10(2): 124-127.
No Suggested Reading articles found!