Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(2): 020701    DOI: 10.1088/1674-1056/20/2/020701
GENERAL Prev   Next  

Exact calculation of the minimal thickness of the large optical path difference wind imaging interferometer

Zhang Chun-Min(张淳民), Ai Jing-Jing(艾晶晶), and Ren Wen-Yi(任文艺)
School of Science, Xi'an Jiaotong University, Xi'an 710049, China; MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  This paper gives the relation between spatial ray and its projection on paper plane based on the vector form of reflective law. Using the method of prism expansion, it obtains the exact expression of the exit height. The exit height can ensure that the incident rays, at arbitrary direction and arbitrary angle, after several transmission and reflection in the two right-angle reflectors, finally pass through the exit surface. Furthermore, it analyses the effects of different parameters on the exit height through computer simulation, and some important conclusions are obtained. The physical meaning of the sign of exit height is described, and the exact expression of the minimal thickness of the large optical path difference wind imaging interferometer is gained. This work is of great scientific significance to the static, real-time simultaneous detection of atmospheric wind field, and it will provide a theoretical and practical guidance for the miniaturization design and engineering realization of wind imaging interferometer.
Keywords:  wind imaging interferometer      thickness      reflective law of vector form      prism expansion  
Received:  17 May 2010      Revised:  13 September 2010      Accepted manuscript online: 
PACS:  07.60.-j (Optical instruments and equipment)  
  07.60.Rd (Visible and ultraviolet spectrometers)  
  42.15.Eq (Optical system design)  
Fund: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 40537031), the National Natural Science Foundation of China (Grant No. 40875013), the National Defense Basic Scientific Research Program of China (Grant No. A1420080187), the National High Technology Research and Development Program of China (Grant No. 2006AA12Z152), and Xianyang Normal University Research Fund (Grant No. 06XSYK268).

Cite this article: 

Zhang Chun-Min(张淳民), Ai Jing-Jing(艾晶晶), and Ren Wen-Yi(任文艺) Exact calculation of the minimal thickness of the large optical path difference wind imaging interferometer 2011 Chin. Phys. B 20 020701

[1] Zhang C M, Zhao B C and Xiang L B 2000 Acta Opt. Sin. 20 697 (in Chinese)
[2] Zhang C M and Jian X H 2010 Opt. Lett. 35 366
[3] Zhang C M, Zhao B C, Yuan Z L and Huang W J 2009 J. Opt. A: Pure Appl. Opt. 11 085401
[4] Zhang C M, Zhao B C and Xiang L B 2006 Optik. 117 265
[5] Zhang C M, Zhao B C, Xiang L B, Li Y C and Peng Z H 2006 Proc. SPIE 6150 615001
[6] Ye J Y, Zhang C M, Zhao B C and Li Y C 2008 Acta Phys. Sin. 57 67 (in Chinese)
[7] Shepherd G G, Thuillier G and Gault W A, et al. 1993 Geophys. Res. 98 10725
[8] Shepherd G G 1996 Appl. Opt. 35 2764
[9] Shimoda H 2003 Proc. SPIE 4881 52059
[10] Zhang C M, Zhao B C, Yuan Y and He J 2006 Proc. SPIE 6032 60320T1
[11] Zhang C M and He J 2006 Opt. Express 14 12561
[12] Gao Z, Xiang L B and An B Q 1998 Opt. Technol. 5 33
[13] Ruan K, Zhang C M and Zhang B C 2008 Acta Phys. Sin. 57 5435 (in Chinese)
[14] Zhang C M, Xiang L B and Zhao B C 2000 Proc. SPIE 4087 957
[15] Zhang C M, Xiang L B and Zhao B C 2002 Opt . Commun. 203 21
[16] Zhang C M, Zhao B C and Xiang L B 2003 Opt . Commun. 227 221
[17] Zhang C M, Zhao B C and Xiang L B 2004 Appl. Opt. 43 6090
[18] Zhang C M, Zhao B C and Xiang L B 2004 J. Opt. A: Pure Appl. Opt. 7 613
[19] Wu L, Zhang C M and Zhao B C 2007 Opt. Commun. 273 67
[20] Zhang C M, Yan X G and Zhao B C 2008 Opt. Commun. 281 2050
[21] Rafert J B, Sellar R G and Blatt J H 1995 Appl. Opt. 34 7228
[22] Sweedler J B and Denton M B 1989 Appl. Spectroscopy 43 1378
[23] Born M and Wolf E 1999 Principles of Optics 7th edn. (Cambridge: Cambridge University Press) pp. 38--49 endfootnotesize
[1] High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording
Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文). Chin. Phys. B, 2023, 32(2): 026803.
[2] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[3] Erratum to “Accurate determination of film thickness by low-angle x-ray reflection”
Ming Xu(徐明), Tao Yang(杨涛), Wenxue Yu(于文学), Ning Yang(杨宁), Cuixiu Liu(刘翠秀), Zhenhong Mai(麦振洪), Wuyan Lai(赖武彦), and Kun Tao(陶琨). Chin. Phys. B, 2022, 31(9): 099901.
[4] Magnetohydrodynamic Kelvin-Helmholtz instability for finite-thickness fluid layers
Hong-Hao Dai(戴鸿昊), Miao-Hua Xu(徐妙华), Hong-Yu Guo(郭宏宇), Ying-Jun Li(李英骏), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(12): 120401.
[5] Molecular dynamics study of coupled layer thickness and strain rate effect on tensile behaviors of Ti/Ni multilayered nanowires
Meng-Jia Su(宿梦嘉), Qiong Deng(邓琼), Lan-Ting Liu(刘兰亭), Lian-Yang Chen(陈连阳), Meng-Long Su(宿梦龙), and Min-Rong An(安敏荣). Chin. Phys. B, 2021, 30(9): 096201.
[6] Characterization of inner layer thickness change of a composite circular tube using nonlinear circumferential guided wave:A feasibility study
Ming-Liang Li(李明亮), Guang-Jian Gao(高广健), and Ming-Xi Deng(邓明晰). Chin. Phys. B, 2021, 30(8): 084301.
[7] A new algorithm based on C-V characteristics to extract the epitaxy layer parameters for power devices with the consideration of termination
Jiupeng Wu(吴九鹏), Na Ren(任娜), and Kuang Sheng(盛况). Chin. Phys. B, 2021, 30(4): 048505.
[8] A simplified approximate analytical model for Rayleigh-Taylor instability in elastic-plastic solid and viscous fluid with thicknesses
Xi Wang(王曦), Xiao-Mian Hu(胡晓棉), Sheng-Tao Wang(王升涛), and Hao Pan(潘昊). Chin. Phys. B, 2021, 30(4): 044702.
[9] Evolution of domain structure in Fe3GeTe2
Siqi Yin(尹思琪), Le Zhao(赵乐), Cheng Song(宋成), Yuan Huang(黄元), Youdi Gu(顾有地), Ruyi Chen(陈如意), Wenxuan Zhu(朱文轩), Yiming Sun(孙一鸣), Wanjun Jiang(江万军), Xiaozhong Zhang(章晓中), and Feng Pan(潘峰). Chin. Phys. B, 2021, 30(2): 027505.
[10] Effect of thickness variations of lithium niobate on insulator waveguide on the frequency spectrum of spontaneous parametric down-conversion
Guang-Tai Xue(薛广太), Xiao-Hui Tian(田晓慧), Chi Zhang(张弛), Zhenda Xie(谢臻达), Ping Xu(徐平), Yan-Xiao Gong(龚彦晓), and Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2021, 30(11): 110313.
[11] Thickness-dependent structural stability and transition in molybdenum disulfide under hydrostatic pressure
Jiansheng Dong(董健生), Gang Ouyang(欧阳钢). Chin. Phys. B, 2020, 29(8): 086403.
[12] Stress and strain analysis of Si-based Ⅲ-V template fabricated by ion-slicing
Shuyan Zhao(赵舒燕), Yuxin Song(宋禹忻), Hao Liang(梁好), Tingting Jin(金婷婷), Jiajie Lin(林家杰), Li Yue(岳丽), Tiangui You(游天桂), Chang Wang(王长), Xin Ou(欧欣), Shumin Wang(王庶民). Chin. Phys. B, 2020, 29(7): 077303.
[13] Damage characteristics of laser plasma shock wave on rear surface of fused silica glass
Xiong Shen(沈雄), Guo-Ying Feng(冯国英), Sheng Jing(景晟), Jing-Hua Han(韩敬华), Ya-Guo Li(李亚国), Kai Liu(刘锴). Chin. Phys. B, 2019, 28(8): 085202.
[14] Direct simulation Monte Carlo study of metal evaporation with collimator in e-beam physical vapor deposition
Xiaoyong Lu(卢肖勇), Junjie Chai(柴俊杰). Chin. Phys. B, 2019, 28(7): 074702.
[15] Thickness-dependent magnetic anisotropy in obliquely deposited Fe(001)/Pd thin film bilayers probed by VNA-FMR
Qeemat Gul, Wei He(何为), Yan Li(李岩), Rui Sun(孙瑞), Na Li(李娜), Xu Yang(杨旭), Yang Li(李阳), Zi-Zhao Gong(弓子召), Zong-Kai Xie(谢宗凯), Xiang-Qun Zhang(张向群), Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2019, 28(7): 077502.
No Suggested Reading articles found!