Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(2): 020508    DOI: 10.1088/1674-1056/20/2/020508
GENERAL Prev   Next  

Noise-induced synchronous stochastic oscillations in small scale cultured heart-cell networks

Yuan Lan(袁岚), Liu Zhi-Qiang(刘志强), Zhang Hui-Min(张慧敏), Ding Xue-Li(丁学利), Yang Ming-Hao(杨明浩), Gu Hua-Guang(古华光), and Ren Wei(任维)
College of Life Science, Shaanxi Normal University, Xi'an 710062, China
Abstract  This paper reports that the synchronous integer multiple oscillations of heart-cell networks or clusters are observed in the biology experiment. The behaviour of the integer multiple rhythm is a transition between super- and sub-threshold oscillations, the stochastic mechanism of the transition is identified. The similar synchronized oscillations are theoretically reproduced in the stochastic network composed of heterogeneous cells whose behaviours are chosen as excitable or oscillatory states near a Hopf bifurcation point. The parameter regions of coupling strength and noise density that the complex oscillatory rhythms can be simulated are identified. The results show that the rhythm results from a simple stochastic alternating process between super- and sub-threshold oscillations. Studies on single heart cells forming these clusters reveal excitable or oscillatory state nearby a Hopf bifurcation point underpinning the stochastic alternation. In discussion, the results are related to some abnormal heartbeat rhythms such as the sinus arrest.
Keywords:  synchronous oscillation      network      Hopf bifurcation      effect of noise      integer multiple rhythms      heart cell  
Received:  08 April 2010      Revised:  02 September 2010      Accepted manuscript online: 
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  87.19.Hh (Cardiac dynamics)  
  87.18.Tt (Noise in biological systems)  
  87.18.Hf (Spatiotemporal pattern formation in cellular populations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10772101 and 30670533), the National High Technology Research and Development Program of China (Grant No. 2007AA02Z310) and the Fundamental Research Funds for the Central Universities (Grant No. GK200902025).

Cite this article: 

Yuan Lan(袁岚), Liu Zhi-Qiang(刘志强), Zhang Hui-Min(张慧敏), Ding Xue-Li(丁学利), Yang Ming-Hao(杨明浩), Gu Hua-Guang(古华光), and Ren Wei(任维) Noise-induced synchronous stochastic oscillations in small scale cultured heart-cell networks 2011 Chin. Phys. B 20 020508

[1] Glass L and Mackey M C 1988 From Clock to Chaos: the Rhythms of Life (Princeton: Princeton University Press) p. 1
[2] Glass L 2001 Nature 410 277
[3] Clusin W T 2003 Crit. Rev. Clin. Lab. Sci. 40 337
[4] González H, Nagai Y, Bub G, Glass L and Shrier A 2003 BioSystems 71 71
[5] Kanakov O I, Osipov G V, Chan C K and Kurths J 2007 Chaos 17 015111
[6] Ponard J G, Kondratyev A A and Kucera J P 2007 Biophys. J. 92 3734
[7] Clay J R and DeHaan R L 1979 Biophys. J. 28 377
[8] Michaels D C, Matyas E P and Jalife J 1987 Circ. Res. 61 704
[9] Glass L, Guevara M R and Shrier A 1983 Phyica D 7 89
[10] Guevara M R, Glass L and Shrier A 1981 Science 214 1350
[11] Cai D, Winslow R L and Noble D 1994 IEEE Trans. Biomed. Eng. 41 217
[12] Soen Y, Cohen N, Lipson D and Braun E 1999 Phys. Rev. Lett. 82 3556
[13] Yamauchi Y, Harada A and Kawahara K 2002 Biol. Cybern. 86 147
[14] Jalife J 1984 J. Physiol. 356 221
[15] Aihara R and Hara M 2005 Biophys. Chem. 116 33
[16] Glass L and Josephson M E 1995 Phys. Rev. Lett. 75 2059
[17] Jung P, Cornell-Bell A, Moss F, Kadar S, Wang J and Showalter K 1998 Chaos 8 567
[18] Zheng Z G 2004 Spatiotemporal Dynamics and Collective Behaviours in Coupled System (Beijing: Higher Education Press) p. 175
[19] Lindner B, Garc'hia-Ojalvo J, Neiman A and Schimansky-Geier L 2004 Phys. Rep. 392 321
[20] Braun H A, Wissing H, Schäfer K and Hirsch M C 1994 Nature 367 270
[21] Longtin A, Bulsara A and Moss F 1991 Phys. Rev. Lett. 67 656
[22] Gu H G, Ren W, Lu Q S, Wu S G, Yang M H and Chen W J 2001 Phys. Lett. A 285 63
[23] Gu H G, Yang M H, Li L, Liu Z Q and Ren W 2002 NeuroReport 13 1657
[24] Yang M H, Li L, Liu Z Q, Xu Y L, Liu H J, Gu H G and Ren W 2009 Int. J. Bifur. Chaos 19 453
[25] Benzi R, Sutera A and Vulpiani A 1981 J. Phys. A 14 L453
[26] Hu G, Ditzinger T, Ning C Z and Haken H 1993 Phys. Rev. Lett. 71 807
[27] Lerma C, Krogh-Madsen T, Guevara M R and Glass L 2007 J. Stat. Phys. 128 347
[28] Kim M Y, Aguilar M, Hodge A, Vigmond E, Shrier A and Glass L 2009 Phys. Rev. Lett. 103 058101
[29] Zhang N, Zhang H M, Liu Z Q, Ding X L, Yang M H, Gu H G and Ren W 2009 Chin. Phys. Lett. 26 110501
[30] Bub G, Glass L, Publicover N G and Shrier A 1998 Proc. Natl. Acad. Sci. USA 95 10283.
[31] Bub G, Shrier A and Glass L 2002 Phys. Rev. Lett. 88 058101
[32] Bub G, Tateno K, Shrier A and Glass L 2003 J. Cardiovasc. Electr. 14 229
[33] Liu H J, Liu Z Q, Gu H G, Yang M H, Li L and Ren W 2006 Acta Biophys. Sin. 22 441 (in Chinese)
[34] Demir S S, Clark J W, Murphey C R and Giles W R 1994 Am. J. Physiol. Cell Physiol. 266 C832
[35] Kurata Y, Hisatome I, Imanishi S and Shibamoto T 2002 Am. J. Physiol Heart Circ. Physiol. 283 H2074
[36] FitzHugh R 1961 Biophys. J. 1 445
[37] Morris C and Lecar H 1981 Biophys. J. 35 193
[38] Schulte-Frohlinde V, Ashkenazy Y, Ivanov P C, Glass L, Goldberger A L and Stanley H E 2001 Phys. Rev. Lett. 87 068104
[39] Beeler G W and Reuter H 1977 J. Physiol. 268 177
[40] Peter K 2003 Circ. Res. 93 381
[41] Takemura G, Miyata S, Kawase Y, Okada H, Maruyama R and Fujiwara H 2006 Autophagy 2 212
[42] Dimmeler S and Leri A 2008 Circ. Res. 106 1319
[43] Liu S Q, Lu Q S and Wang Q 1998 Acta Phys. Sin. 47 1057 (in Chinese)
[44] Ma J, Jin W Y, Li Y L and Chen Y 2007 Acta Phys. Sin. 56 2456 (in Chinese)
[45] Yin X Z and Liu Y 2008 Acta Phys. Sin. 57 6844 (in Chinese)
[46] Wilkins M and Sneyd J 1998 J. Theor. Biol. 191 299
[47] Shi X M and Liu Z R 2005 Chin. Phys. Lett. 22 3206
[48] Orchard C H, Mustafa M R and White E 1995 Chaos, Solitons and Fractals 5 447
[49] Bai Y Q, Tang A H, Wang S Q and Zhu X 2007 Acta Phys. Sin. 56 3607 (in Chinese)
[50] Tang A H and Wang S Q 2008 Acta Phys. Sin. Prog. Biochem. Biophys. 35 892
[51] Cheng H, Lederer W J and Cannell M B 1993 Science 262 740
[52] Davidenko J M, Pertsov A V, Salomonsz R, Baxter W and Jalife J 1992 Nature 355 349
[53] Wang B H, Lu Q S, Lü S J and Lang X F 2009 Chin. Phys. B 18 872
[54] Shi X and Lu Q S 2005 Chin. Phys. 14 77
[1] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[2] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[5] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[6] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[7] Atomistic insights into early stage corrosion of bcc Fe surfaces in oxygen dissolved liquid lead-bismuth eutectic (LBE-O)
Ting Zhou(周婷), Xing Gao(高星), Zhiwei Ma(马志伟), Hailong Chang(常海龙), Tielong Shen(申铁龙), Minghuan Cui(崔明焕), and Zhiguang Wang(王志光). Chin. Phys. B, 2023, 32(3): 036801.
[8] Inverse stochastic resonance in modular neural network with synaptic plasticity
Yong-Tao Yu(于永涛) and Xiao-Li Yang(杨晓丽). Chin. Phys. B, 2023, 32(3): 030201.
[9] Lossless embedding: A visually meaningful image encryption algorithm based on hyperchaos and compressive sensing
Xing-Yuan Wang(王兴元), Xiao-Li Wang(王哓丽), Lin Teng(滕琳), Dong-Hua Jiang(蒋东华), and Yongjin Xian(咸永锦). Chin. Phys. B, 2023, 32(2): 020503.
[10] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[11] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[12] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[13] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[14] Improved functional-weight approach to oscillatory patterns in excitable networks
Tao Li(李涛), Lin Yan(严霖), and Zhigang Zheng(郑志刚). Chin. Phys. B, 2022, 31(9): 090502.
[15] Exploring fundamental laws of classical mechanics via predicting the orbits of planets based on neural networks
Jian Zhang(张健), Yiming Liu(刘一鸣), and Zhanchun Tu(涂展春). Chin. Phys. B, 2022, 31(9): 094502.
No Suggested Reading articles found!