Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(2): 020306    DOI: 10.1088/1674-1056/20/2/020306
GENERAL Prev   Next  

Scaling of entanglement entropy for spin chain with Dzyaloshinskii–Moriya interaction

Du Long(杜龙),Hou Jing-Min(侯净敏),Ding Jia-Yan(丁伽焱), Zhang Wen-Xin(张文新),Tian Zhi(田志),and Chen Ting-Ting(陈婷婷)
Department of Physics, Southeast University, Nanjing 211189, China
Abstract  This paper investigates the entanglement in an XX-type spin chain with Dzyaloshinskii——Moriya interaction under an external magnetic field. The von Neumann entropy of entanglement between two blocks for the ground state of the system is evaluated. It analyses and discusses the scaling behaviour of the entanglement entropy.
Keywords:  entanglement      scaling      spin chain      Dzyaloshinskii–Moriya interaction  
Received:  28 April 2010      Revised:  09 September 2010      Accepted manuscript online: 
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  75.10.Jm (Quantized spin models, including quantum spin frustration)  
Fund: Project supported by the Teaching and Research Foundation for the Outstanding Young Faculty of Southeast University.

Cite this article: 

Du Long(杜龙),Hou Jing-Min(侯净敏),Ding Jia-Yan(丁伽焱), Zhang Wen-Xin(张文新),Tian Zhi(田志),and Chen Ting-Ting(陈婷婷) Scaling of entanglement entropy for spin chain with Dzyaloshinskii–Moriya interaction 2011 Chin. Phys. B 20 020306

[1] Greenberger D, Hentschel K and Weinert F 2009 Compendium of Quantum Physics (Berlin, Heidelberg: Springer)
[2] Pasquale F D and Giorgi G L 2008 Euro. Phys. J. Special Topics 160 139
[3] Petz D 2008 Quantum Information Theory and Quantum Statistics (Berlin, Heidelberg: Springer)
[4] Di'osi L 2007 A Short Course in Quantum Information Theory (Berlin, Heidelberg: Springer)
[5] Loss D and Divincezo D P 1998 Phys. Rev. A 57 120
[6] Taylor J M, Dür W, Zoller P, Yacoby A, Marcus C M and Lulin M D 2005 Phys. Rev. Lett. 94 236803
[7] Braun D 2002 Phys. Rev. Lett. 89 277901
[8] Osborne T J and Nielsen M A 2002 Phys. Rev. A 66 032110
[9] Osterloh A, Amico L, Falci G and Fazi R 2002 Nature 416 608
[10] Wu L A, Sarandy M S and Lidar D A 2004 Phys. Rev. Lett. 93 2500404
[11] Shan C J, Cheng W W, Liu T K, Huang Y X and Li H 2008 Chin. Phys. B 17 4002
[12] Wang C L, Yan J Y and Yi X X 2010 Chin. Phys. B 19 0405012
[13] Vidal G, Latorre J I, Rico E and Kitaev A 2003 Phys. Rev. Lett. 90 227902
[14] Latorre J I, Rico E and Vidal G 2004 Quantum Inform. Comput. 4 48
[15] Laflorencie N 2005 Phys. Rev. B 72 140408(R)
[16] Jin B and Korepin V E 2004 J. Stat. Phys. 116 79
[17] Latorre and Riera A 2009 J. Phys. A 42 504002
[18] Zhao J Z, Wang X Q, Xiang T, Su Z B and Yu L 2003 Phys. Rev. Lett. 90 207204
[19] Rubinstein M, Shraiman B and Nelson D R 1983 Phys. Rev. B 27 1800
[20] Coffey D, Rice T M and Zhang F C 1991 Phys. Rev. B 44 10112
[21] Sergienko I A and Dagotto E 2006 Phys. Rev. B 73 094434
[22] Aky"uz C, Aydiner E and M"ustecapliouglu "O E 2008 Opt. Commum. 281 5271
[23] Qin M, Xu S L, Tao Y J and Tian D P 2008 Chin. Phys. B 17 2800
[24] Fradkin E 1989 Phys. Rev. Lett. 63 322
[25] Jozsa R and Schlienz J 2000 Phys. Rev. A 62 012301
[26] Rajagopal A K 1995 Phys. Rev. Lett. 74 1048
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Exact surface energy and elementary excitations of the XXX spin-1/2 chain with arbitrary non-diagonal boundary fields
Jia-Sheng Dong(董家生), Pengcheng Lu(路鹏程), Pei Sun(孙佩), Yi Qiao(乔艺), Junpeng Cao(曹俊鹏), Kun Hao(郝昆), and Wen-Li Yang(杨文力). Chin. Phys. B, 2023, 32(1): 017501.
[4] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[5] Energy levels and magnetic dipole transition parameters for the nitrogen isoelectronic sequence
Mu-Hong Hu(胡木宏), Nan Wang(王楠), Pin-Jun Ouyang(欧阳品均),Xin-Jie Feng(冯新杰), Yang Yang(杨扬), and Chen-Sheng Wu(武晨晟). Chin. Phys. B, 2022, 31(9): 093101.
[6] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[7] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[8] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[9] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
[10] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[11] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[12] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[13] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[14] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[15] Anomalous Hall effect of facing-target sputtered ferrimagnetic Mn4N epitaxial films with perpendicular magnetic anisotropy
Zeyu Zhang(张泽宇), Qiang Zhang(张强), and Wenbo Mi(米文博). Chin. Phys. B, 2022, 31(4): 047305.
No Suggested Reading articles found!