Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(11): 118201    DOI: 10.1088/1674-1056/20/11/118201
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A new solvent suppression method via radiation damping effect

Cui Xiao-Hong(崔晓红), Peng Ling(彭凌), Zhang Zhen-Min(张振敏), Cai Shu-Hui(蔡淑惠), and Chen Zhong(陈忠)
Department of Electronic Science, Fujian Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
Abstract  Radiation damping effects induced by the dominated solvent in a solution sample can be applied to suppress the solvent signal. The precession pathway and rate back to equilibrium state between solute and solvent spins are different under radiation damping. In this paper, a series of pulse sequences using radiation damping were designed for the solvent suppression in nuclear magnetic resonance (NMR) spectroscopy. Compared to the WATERGATE method, the solute signals adjacent to the solvent would not be influenced by using the radiation damping method. The one-dimensional (1D) 1H NMR, two-dimensional (2D) gCOSY, and J-resolved experimental results show the practicability of solvent suppression via radiation damping effects in 1D and 2D NMR spectroscopy.
Keywords:  nuclear magnetic resonance      solvent suppression      radiation damping  
Received:  18 April 2011      Revised:  17 June 2011      Accepted manuscript online: 
PACS:  82.56.-b (Nuclear magnetic resonance)  
  33.25.+k (Nuclear resonance and relaxation)  
  76.60.-k (Nuclear magnetic resonance and relaxation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10974164 and 11074209) and the Fundamental Research Funds for the Central Universities (Grant Nos. 2010121008 and 2010121010).

Cite this article: 

Cui Xiao-Hong(崔晓红), Peng Ling(彭凌), Zhang Zhen-Min(张振敏), Cai Shu-Hui(蔡淑惠), and Chen Zhong(陈忠) A new solvent suppression method via radiation damping effect 2011 Chin. Phys. B 20 118201

[1] Zheng G and Price W S 2010 Prog. Nucl. Magn. Reson. Spectrosc. 56 267
[2] Hoult D I 1976 J. Magn. Reson. 21 337
[3] Ogg R J, Kingsley R B and Taylor J S 1994 J. Magn. Reson. 104 1
[4] Piotto M, Saudek V and Sklenávr V 1992 J. Biomol. NMR 2 661
[5] Sklenávr V, Piotto M, Leppik R and Saudek V 1993 J. Magn. Reson. A 102 241
[6] Hwang T L and Shaka A J 1995 J. Magn. Reson. A 112 275
[7] Simpson A J and Brown S A 2005 J. Magn. Reson. 175 340
[8] Liu M L, Mao X A, Ye C H, Huang H, Nicholson J K and Lindon J C 1998 J. Magn. Reson. 132 125
[9] Hoffmann M M, Sobstyl H S and Seedhouse S J 2008 Magn. Reson. Chem. 46 660
[10] Bloembergen N and Pound R V 1954 Phys. Rev. 95 8
[11] Abragam A 1961 The Principles of Nuclear Magnetism (Oxford: Clarendon Press) p. 96
[12] Augustine M P 2002 Prog. Nucl. Magn. Reson. Spectrosc. 40 111
[13] Peng L, Cai S H, Fu R Q, Ye C H and Chen Z 2009 Chem. Phys. Lett. 479 165
[14] Wang H Z, Xu L F, Yu J, Huang Q M, Wang X Y, Lu L, Wang H, Huang Y, Cheng H Y, Zhang X L and Li G Y 2010 Acta Phys. Sin. 59 7463 (in Chinese)
[15] Chen J H, Mao X A and Ye C H 1997 J. Magn. Reson. 124 490
[16] Chen S, Zhu X Q, Cai S H and Chen Z 2008 Chin. Phys. B 17 915
[17] Price W S and Wälchli M 2002 Magn. Reson. Chem. 40 128
[18] Li S, Ren Y F, Wang N, Tian Y, Chu H F, Li S L, Chen Y F, Li J, Chen G H and Zheng D N 2009 Acta Phys. Sin. 58 5744 (in Chinese)
[19] Peng L, Cai S and Chen Z 2007 Physica B 396 57
[20] Shen G P, Cai C B, Cai S H and Chen Z 2009 Chin. Phys. B 18 4797
[21] Krishnan V V, Thornton K H and Cosman M 1999 Chem. Phys. Lett. 302 317
[22] Louis-Joseph A, Abergel D, Lebars I and Lallemand J Y 2001 Chem. Phys. Lett. 337 92
[23] Walls J D, Huang S Y and Lin Y Y 2007 J. Chem. Phys. 127 054507
[24] Datta S, Huang S Y and Lin Y Y 2006 J. Phys. Chem. B 110 22071
[25] Chen J H and Mao X A 1997 J. Chem. Phys. 107 7120
[26] Price W S and Arata Y 1996 J. Magn. Reson. B 112 190
[27] Price W S, Hayamizu K and Arata Y 1997 J. Magn. Reson. 126 256
[28] Suryan G 1949 Curr. Sci. 18 203
[29] Mao X A and Ye C H 1997 Concepts Magn. Reson. 9 173
[30] Augustine M P and Hahn E L 2001 Concepts Magn. Reson. 13 1
[31] Warren W S, Hammes S L and Bates J L 1989 J. Chem. Phys. 91 5895
[32] Krishnan V V 2006 J. Magn. Reson. 179 294
[33] Chen J H, Cutting B and Bodenhausen G 2000 J. Chem. Phys. 112 6511
[1] Tri-hexagonal charge order in kagome metal CsV3Sb5 revealed by 121Sb nuclear quadrupole resonance
Chao Mu(牟超), Qiangwei Yin(殷蔷薇), Zhijun Tu(涂志俊), Chunsheng Gong(龚春生), Ping Zheng(郑萍), Hechang Lei(雷和畅), Zheng Li(李政), and Jianlin Luo(雒建林). Chin. Phys. B, 2022, 31(1): 017105.
[2] Quantum simulations with nuclear magnetic resonance system
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为). Chin. Phys. B, 2021, 30(4): 048201.
[3] Nodal superconducting gap in LiFeP revealed by NMR: Contrast with LiFeAs
A F Fang(房爱芳), R Zhou(周睿), H Tukada, J Yang(杨杰), Z Deng(邓正), X C Wang(望贤成) , C Q Jin(靳常青), and Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2021, 30(4): 047403.
[4] Spin correlations in the S=1 armchair chain Ni2NbBO6 as seen from NMR
Kai-Yue Zeng(曾凯悦), Long Ma(马龙), Long-Meng Xu(徐龙猛), Zhao-Ming Tian(田召明), Lang-Sheng Ling(凌浪生), and Li Pi(皮雳). Chin. Phys. B, 2021, 30(4): 047503.
[5] NMR and NQR studies on transition-metal arsenide superconductors LaRu2As2, KCa2Fe4As4F2, and A2Cr3As3
Jun Luo(罗军), Chunguang Wang(王春光) Zhicheng Wang(王志成), Qi Guo(郭琦), Jie Yang(杨杰), Rui Zhou(周睿), K Matano, T Oguchi, Zhian Ren(任治安), Guanghan Cao(曹光旱), Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2020, 29(6): 067402.
[6] High-magnetic-field induced charge order in high-Tc cuprate superconductors
L X Zheng(郑立玄), J Li(李建), T Wu(吴涛). Chin. Phys. B, 2019, 28(11): 117402.
[7] Progress of novel diluted ferromagnetic semiconductors with decoupled spin and charge doping: Counterparts of Fe-based superconductors
Shengli Guo(郭胜利), Fanlong Ning(宁凡龙). Chin. Phys. B, 2018, 27(9): 097502.
[8] Nuclear magnetic resonance measurement station in SECUF using hybrid superconducting magnets
Zheng Li(李政), Guo-qing Zheng(郑国庆). Chin. Phys. B, 2018, 27(7): 077404.
[9] Structural phase transition, precursory electronic anomaly, and strong-coupling superconductivity in quasi-skutterudite (Sr1-xCax)3Ir4Sn13 and Ca3Rh4Sn13
Jun Luo(罗军), Jie Yang(杨杰), S Maeda, Zheng Li(李政), Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2018, 27(7): 077401.
[10] NMR evidence of charge fluctuations in multiferroic CuBr2
Rui-Qi Wang(王瑞琦), Jia-Cheng Zheng(郑家成), Tao Chen(陈涛), Peng-Shuai Wang(王朋帅), Jin-Shan Zhang(张金珊), Yi Cui(崔祎), Chong Wang(王冲), Yuan Li(李源), Sheng Xu(徐胜), Feng Yuan(袁峰), Wei-Qiang Yu(于伟强). Chin. Phys. B, 2018, 27(3): 037502.
[11] Nuclear magnetic resonance for quantum computing: Techniques and recent achievements
Tao Xin(辛涛), Bi-Xue Wang(王碧雪), Ke-Ren Li(李可仁), Xiang-Yu Kong(孔祥宇), Shi-Jie Wei(魏世杰), Tao Wang(王涛), Dong Ruan(阮东), Gui-Lu Long(龙桂鲁). Chin. Phys. B, 2018, 27(2): 020308.
[12] Optical pumping nuclear magnetic resonance system rotating in a plane parallel to the quantization axis
Zhi-Chao Ding(丁志超), Jie Yuan(袁杰), Hui Luo(罗晖), Xing-Wu Long(龙兴武). Chin. Phys. B, 2017, 26(9): 093301.
[13] Parameter analysis for a nuclear magnetic resonance gyroscope based on bf133Cs-129Xe/131Xe
Da-Wei Zhang(张大伟), Zheng-Yi Xu(徐正一), Min Zhou(周敏), Xin-Ye Xu(徐信业). Chin. Phys. B, 2017, 26(2): 023201.
[14] Interfacial transport in lithium-ion conductors
Shaofei Wang(王少飞) and Liquan Chen(陈立泉). Chin. Phys. B, 2016, 25(1): 018202.
[15] Fast high-resolution nuclear magnetic resonance spectroscopy through indirect zero-quantum coherence detection in inhomogeneous fields
Ke Han-Ping (柯汉平), Chen Hao (陈浩), Lin Yan-Qin (林雁勤), Wei Zhi-Liang (韦芝良), Cai Shu-Hui (蔡淑惠), Zhang Zhi-Yong (张志勇), Chen Zhong (陈忠). Chin. Phys. B, 2014, 23(6): 063201.
No Suggested Reading articles found!