Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(11): 110306    DOI: 10.1088/1674-1056/20/11/110306
GENERAL Prev   Next  

Controlled phase gates based on two nonidentical quantum dots trapped in separate cavities

Wang Xiao-Xia(王晓霞), Zhang Jian-Qi(张建奇), Yu Ya-Fei(於亚飞), and Zhang Zhi-Ming(张智明)
Laboratory of Photonic Information Technology, SIPSE and LQIT, South China Normal University, Guangzhou 510006, China
Abstract  We propose a scheme for realizing two-qubit controlled phase gates on two nonidentical quantum dots trapped in separate cavities. In our scheme, each dot simultaneously interacts with one highly detuned cavity mode and two strong driven classical fields. During the gate operation, the quantum dots undergo no transition, while the system can acquire different phases conditional on different states of the quantum dots. With the application of the single-qubit operations, two-qubit controlled phase gates can be realized.
Keywords:  entanglement      quantum information      quantum dot  
Received:  04 April 2011      Revised:  30 June 2011      Accepted manuscript online: 
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  73.21.La (Quantum dots)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60978009) and the National Basic Research Program of China (Grant Nos. 2007CB925204 and 2009CB929604).

Cite this article: 

Wang Xiao-Xia(王晓霞), Zhang Jian-Qi(张建奇), Yu Ya-Fei(於亚飞), and Zhang Zhi-Ming(张智明) Controlled phase gates based on two nonidentical quantum dots trapped in separate cavities 2011 Chin. Phys. B 20 110306

[1] Englund D, Faraon A, Fushman I, Ellis B and Vučković J 2009 (1st edn.) Single Semiconductor Quantum Dots (Berlin: Springer) pp. 299–329
[2] Cirac J I, Zoller P, Kimble H J and Mabuchi H 1997 Phys. Rev. Lett. 78 3221
[3] Duan L M and Kimble H J 2004 Phys. Rev. Lett. 92 127902
[4] Englund D, Fattal D, Waks E, Solomon G, Zhang B, Nakaoka T, Arakawa Y, Yamamoto Y and Vukovi J 2005 Phys. Rev. Lett. 95 013904
[5] Yoshie T, Scherer A, Hendrickson J, Khitrova G, Gibbs H M, Rupper G, Ell C, Shchekin O B and Deppe D G 2004 Nature 432 200
[6] Kimble H J 2008 Nature 453 1023
[7] Shao X Q, Chen L and Zhang S 2009 Chin. Phys. B 18 440
[8] Tang S Q, Zhang D Y, Xie L J, Zhan X G and Gao F 2009 Chin. Phys. B 18 56
[9] Monroe C, Meekhof D M, King B E, Itano W M and Wineland D J 1995 Phys. Rev. Lett. 75 4714
[10] Chiaverini J, Leibfried D, Schaetz T, Barrett M D, Blakestad R B, Britton J, Itano W M, Jost J D, Knill E, Langer C, Ozeri R and Wineland D J 2005 Nature 432 602
[11] Liu W Y, Bi S W and Dou X B 2010 Acta Phys. Sin. 59 1780 (in Chinese)
[12] Xu Y Y, Zhou F, Zhang X L and Feng M 2010 Chin. Phys. B 19 090317
[13] Imamoglu A, Awschalom D D, Burkard G, DiVincenzo D P, Loss D, Sherwin M and Small A 1999 Phys. Rev. Lett. 83 4204
[14] Turchette Q, Hood C, Lange W, Mabuchi H and Kimble H J 1995 Phys. Rev. Lett. 75 4710
[15] Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E and Kimble H J 2005 Nature 436 87
[16] Nogues G, Rauschenbeutel A, Osnaghi S, Brune M, Raimond J M and Haroche S 1999 Nature 400 239
[17] Englund D, Fattal D, Waks E, Solomon G, Zhang B, Nakaoka T, Arakawa Y, Yamamoto Y and Vukovi J 2005 Phys. Rev. Lett. 95 013904
[18] Yoshie T, Scherer A, Hendrickson J, Khitrova G, Gibbs H M, Rupper G, Ell C, Shchekin O B and Deppe D G 2004 Nature 432 200
[19] Hennessy K, Badolato A, Winger M, Gerace D, Atature M, Gulde S, Falt S, Hu E L and Imamoglu A 2007 Nature 445 896
[20] Imamoğlu A, Falt S, Dreiser J, Fernandez G, Atature M, Hennessy K, Badolato A and Gerace D 2007 J. Appl. Phys. 101 081602
[21] Petta J R , Johnson A C, Taylor J M, Laird E A, Yacoby A, Lukin M D, Marcus C M, Hanson M P and Gossard A C 2005 Science 309 2180
[22] Nazir A, Lovett B W, Andrew G and Briggs D 2004 Phys. Rev. A 70 052301
[23] Zhang J Q, Yu Y F and Zhang Z M 2010 Phys. Rev. A 374 3818
[24] Kim H, Thon S M, Petroff P M and Bouwmeester D 2009 Appl. Phys. Lett. 95 243107
[25] Craig N J, Taylor J M, Lester E A, Marcus C M, Hanson M P and Gossard A C 2004 Science 304 565
[26] Xu X, Wu Y, Sun B, Huang Q, Cheng J, Steel D G, Bracker A S, Gammon D, Emary C and Sham L J 2007 Phys. Rev. Lett. 99 097401
[27] Feng X L, Wu C F, Sun H and Oh C H 2009 Phys. Rev. Lett. 103 200501
[28] James D F V and Jerke J 2007 Can. J. Phys. 85 325
[29] Guzman R, Retamal J C, Solano E and Zagury N 2006 Phys. Rev. Lett. 96 010502
[30] Zhang J Q, Yu Y F and Zhang Z M 2011 arXiv:1104.2456v1
[31] Zhang J Q, Yu Y F, Feng X L and Zhang Z M 2011 arXiv:1012.0928v3
[32] Yao P and Hughes S 2009 Opt. Express 17 11505
[33] Laucht A, Neumann A, Villas-Boas J M, Bichler M, Amann M C and Finley J J 2008 Phys. Rev. B 77 161303
[34] Atature M, Dreiser J, Badolato A, Hogele Al, Karrai K and Mamoglu A I 2006 Science 312 551
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[4] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[5] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[6] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[7] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[8] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[9] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[10] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[11] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[12] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[13] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[14] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[15] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
No Suggested Reading articles found!