Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(11): 110304    DOI: 10.1088/1674-1056/20/11/110304
GENERAL Prev   Next  

Transfer of entangled state, entanglement swapping and quantum information processing via the Rydberg blockade

Deng Li(邓黎), Chen Ai-Xi(陈爱喜), and Zhang Jian-Song(张建松)
School of Basic Science, East China Jiaotong University, Nanchang 330013, China
Abstract  We provide a scheme with which the transfer of the entangled state and the entanglement swapping can be realized in a system of neutral atoms via the Rydberg blockade. Our idea can be extended to teleport an unknown atomic state. According to the latest theoretical research of the Rydberg excitation and experimental reports of the Rydberg blockade effect in quantum information processing, we discuss the experimental feasibility of our scheme.
Keywords:  Rydberg blockade      entanglement      entanglement swapping  
Received:  13 June 2011      Revised:  16 June 2011      Accepted manuscript online: 
PACS:  03.67.Bg (Entanglement production and manipulation)  
  32.80.Ee (Rydberg states)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11065007), the Foundation of Talent of Jinggang of Jiangxi Province, China (Grant No. 2008DQ00400), and the Science Foundation of East China Jiaotong University (Grant No. 10JC03).

Cite this article: 

Deng Li(邓黎), Chen Ai-Xi(陈爱喜), and Zhang Jian-Song(张建松) Transfer of entangled state, entanglement swapping and quantum information processing via the Rydberg blockade 2011 Chin. Phys. B 20 110304

[1] Zeng K and Fang M F 2005 Chin. Phys. 14 2009
[2] Wu Y, Payne M G, Hagley E W and Deng L 2004 Phys. Rev. A 69 063803
[3] Lo H K 2000 Phys. Rev. A 62 012313
[4] Chen A X and Li J H 2005 Chin. Phys. 14 1507
[5] Chen A X, Deng L, Li J H and Zhan Z M 2006 Commun. Theor. Phys. 46 221
[6] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys.Rev. Lett. 70 1895
[7] Zheng S B 2005 Chin. Phys. 14 1825
[8] Zhang Z J 2006 Opt. Commun. 261 199
[9] Cai Q Y and Tan Y G 2006 Phys. Rev. A 73 032305
[10] Zheng S B 2002 Phys. Rev. A 65 051804R
[11] Bouwmeester D, Pan J W, Daniell M, Weinfurter H and Zeilinger A 1999 Phys. Rev. Lett. 82 1345
[12] Aspect A 1999 Nature 398 189
[13] Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392
[14] Julsgaard B, Kozhekin A and Polzik E S 2001 Nature 413 400
[15] Chou C W, de Riedmatten H, Felinto D, Polyakov S V, van Enk S J and Kimble H J 2005 Nature 438 828
[16] Wilk T, Ga"etan A, Evellin C, Wolters J, Miroshnychenko Y, Grangier P and Browaeys A 2010 Phys. Rev. Lett. 104 010502
[17] Yang X and Wu Y 2005 J. Opt. B: Quantum Semiclass. Opt. 7 54
[18] Li G X, Tan H T and Wu S P 2004 Phys. Rev. A 70 064301
[19] Cai Q Y and Li B W 2004 Chin. Phys. Lett. 21 601
[20] Wu Y and Deng L 2004 Opt. Lett. 29 1144
[21] Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G and Saffman M 2010 Phys. Rev. Lett. 104 010503
[22] Urban E, Johnson T A, Henage T, Isenhower L, Yavuz D D, Walker T G and Saffman M 2009 Nat. Phys. 5 110
[23] Zukowski M, Zeilinger A, Horne M A and Ekert A K 1993 Phys. Rev. Lett. 71 4287
[24] Pan J W, Bouwmeester D, Weinfurter H and Zeilinger A 1998 Phys. Rev. Lett. 80 3891
[25] Gillet J, Agarwal G S and Bastin S 2010 Phys. Rev. A 81 013837
[26] Ates C, Pohl T, Pattard T and Rost J M 2007 Phys. Rev. A 76 013413
[27] Wu Y 1996 Phys. Rev. A 54 4534
[28] Wu Y and Yang X 2005 Phys. Rev. A 71 053806
[29] Wei Q, Yan Y and Li G X 2010 Acta Phys. Sin. 59 4453 (in Chinese)
[30] Xie S Y and Hu X 2010 Acta Phys. Sin. 59 6172 (in Chinese)
[31] Shan C J, Liu J B, Chen T, Liu T K, Huan Y X and Li H 2010 Acta Phys. Sin. 59 6799 (in Chinese)
[32] Guo L and Liang X T 2009 Acta Phys. Sin. 58 50 (in Chinese)
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[4] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[5] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[6] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[7] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[8] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[9] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[10] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[11] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[12] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[13] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[14] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
[15] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
No Suggested Reading articles found!