Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(10): 100310    DOI: 10.1088/1674-1056/20/10/100310
GENERAL Prev   Next  

Decoherence-free spin entanglement generation and purification in nanowire double quantum dots

Peng Xue(薛鹏)
Department of Physics, Southeast University, Nanjing 211189, China
Abstract  We propose a deterministic generation and purification of decoherence-free spin entangled states with singlet-triplet spins in nanowire double quantum dots via resonator-assisted charge manipulation and measurement techniques. Each spin qubit corresponds to two electrons in a double quantum dot in the nanowire, with the singlet and one of the triplets as the decoherence-free qubit states. The logical qubits are immunized against the dominant source of decoherence-dephasing—while the influences of additional errors are shown by numerical simulations. We analyse the performance and stability of all required operations and emphasize that all techniques are feasible in current experimental conditions.
Keywords:  decoherence-free      entanglement      nanowire quantum dot      spin qubit  
Received:  10 March 2011      Revised:  22 April 2011      Accepted manuscript online: 
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  73.21.La (Quantum dots)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11004029), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2010422), the Ph. D. Program Foundation of the Ministry of Education of China, the Excellent Young Teachers Program of Southeast University, and the National Basic Research Development Program of China (Grant No. 2011CB921203).

Cite this article: 

Peng Xue(薛鹏) Decoherence-free spin entanglement generation and purification in nanowire double quantum dots 2011 Chin. Phys. B 20 100310

[1] Gottesman D and Chuang I L 1999 Nature 402 390
[2] Duan L M and Guo G C 1997 Phys. Rev. Lett. 79 1953
[3] Zanardi P and Rasetti M 1997 Phys. Rev. Lett. 79 3306
[4] Lidar D A, Chuang I L and Whaley K B 1998 Phys. Rev. Lett. 81 2594
[5] Taylor J M, Dür W, Zoller P, Yacoby A, Marcus C M and Lukin M D 2005 Phys. Rev. Lett. 94 236803
[6] Petta J R, Johnson A C, Taylor J M, Laird E A, Yacoby A, Lukin M D, Marcus C M, Hanson M P and Gossard A C 2005 Science 309 2180
[7] Taylor J M, Petta1 J R, Johnson A C, Yacoby A, Marcus C M and Lukin M D 2007 Phys. Rev. B 76 035315
[8] Imamoglu A, Awschalom D D, Burkard G, DiVincenzo D P, Loss D, Sherwin M and Small A 1999 Phys. Rev. Lett. 83 4204
[9] Burkard G and Imamoglu A 2006 Phys. Rev. B 74 041307
[10] Taylor J M and Lukin M D arXiv: cond-mat/0605144
[11] Lin Z R, Guo G P, Tu T, Zhu F Y and Guo G C 2008 Phys. Rev. Lett. 101 230501
[12] Xue P 2010 Phys. Lett. A 374 2601
[13] Xue P and Sanders B C 2010 Phys. Rev. A 82 085326
[14] Trif M, Golovach V N and Loss D 2008 Phys. Rev. B 77 045434
[15] This novel state of light has been generated and characterized by a non-positive Wigner function experimentally in Neergaard-Nielsen J S, Nielsen B M, Hettich, Molmer K and Polzik E S 2006 Phys. Rev. Lett. 97 083604.
[16] Wall D F and Milburn G J 1994 Quantum Optics (Berlin: Springer-Verlag)
[17] Duan L M and Kimble H J 2004 Phys. Rev. Lett. 92 127902
[18] Xue P and Xiao Y F 2007 Phys. Rev. Lett. 97 140501
[19] Xue P 2008 Phys. Lett. A 372 6859
[20] Childress L, Sorensen A S and Lukin M D 2004 Phys. Rev. A 69 042302
[21] Zhong Z, Fang Y, Lu W and Lieber C 2005 Nano Lett. 5 1143
[22] Fasth C, Fuhrer A, Björk M T and Samuelson L 2005 Nano Lett. 5 1487
[23] Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M and Schoelkopf R J 2004 Nature 431 162
[24] Björk M T, Fuhrer A, Hansen A E, Larsson M W, Froberg L E and Samuelson L 2005 Phys. Rev. B 72 201307(R)
[25] With a magnetic field about 1 T the resonator in coplanar waveguides with Q~102-103 have already been demonstrated by Frunzio L 2005 it IEEE Transactions on Applied Superconductivity 15 860
[26] Hayashi T, Fujisawa T, Cheong H D, Jeong Y H and Hirayama Y 2004 Phys. Rev. Lett. 91 226804 bibitem 27 Wu L A and Lidar D A 2002 Phys. Rev. Lett. 88 207902 bibitem 28 Deutsch D, Ekert A, Jozsa R, Macchiavello C, Popescu S and Sanpera A 1996 Phys. Rev. Lett. 77 2818 bibitem 29 Dür W and Briegel H J 2003 Phys. Rev. Lett. 90 067901
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[4] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[5] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[6] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[7] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[8] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[9] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[10] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[11] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[12] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[13] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[14] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
[15] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
No Suggested Reading articles found!