Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(10): 100309    DOI: 10.1088/1674-1056/20/10/100309
GENERAL Prev   Next  

A two-step quantum secure direct communication protocol with hyperentanglement

Gu Bin(顾斌)a)b)†, Huang Yu-Gai(黄余改) c), Fang Xia(方夏)c), and Zhang Cheng-Yi(张成义)a)b)
a College of Mathematics and Physics, Nanjing University of Information Science and Technology, Nanjing 210044, Chinab The Photonic Technology Laboratory, Nanjing University of Information Science and Technology, Nanjing 210044, China; c Jiangsu Institute of Education, Nanjing 210013, China
Abstract  We propose a two-step quantum secure direct communication (QSDC) protocol with hyperentanglement in both the spatial-mode and the polarization degrees of freedom of photon pairs which can in principle be produced with a beta barium borate crystal. The secret message can be encoded on the photon pairs with unitary operations in these two degrees of freedom independently. This QSDC protocol has a higher capacity than the original two-step QSDC protocol as each photon pair can carry 4 bits of information. Compared with the QSDC protocol based on hyperdense coding, this QSDC protocol has the immunity to Trojan horse attack strategies with the process for determining the number of the photons in each quantum signal as it is a one-way quantum communication protocol.
Keywords:  quantum secure direct communication      two-step      hyperentanglement      high capacity  
Received:  26 April 2011      Revised:  20 May 2011      Accepted manuscript online: 
PACS:  03.67.Hk (Quantum communication)  
  03.67.Dd (Quantum cryptography and communication security)  
Fund: Project supported by the Natural Science Foundation of Jiangsu Provincial Universities, China (Grant No. 10KJB180004).

Cite this article: 

Gu Bin(顾斌), Huang Yu-Gai(黄余改), Fang Xia(方夏), and Zhang Cheng-Yi(张成义) A two-step quantum secure direct communication protocol with hyperentanglement 2011 Chin. Phys. B 20 100309

[1] Bennett C H and Brassad G 1984 Proc. IEEE Int. Conf. Computers, Systems and Signal Processing Bangalore, India (New York: IEEE) p. 175
[2] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 emphRev. Mod. Phys. 74 145
[3] Li X H, Duan X J, Sheng Y B, Zhou H Y and Deng F G 2009 Chin. Phys. B 18 3710
[4] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[5] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[6] Deng F G and Long G L 2004 Phys. Rev. A 69 052319
[7] Boström K and Felbinger T 2002 Phys. Rev. Lett. 89 187902
[8] Cai Q Y and Li B W 2004 Chin. Phys. Lett. 21 601
[9] Wang C, Deng F G, Li Y S, Zhou P and Zhou H Y 2005 Phys. Rev. A 71 044305
[10] Wang C, Deng F G and Long G L 2005 Opt. Commun. 253 15
[11] Deng F G, Li X H, Li C Y, Zhou P and Zhou H Y 2006 Phys. Lett. A 359 359
[12] Li X H, Li C Y, Deng F G, Zhou P, Liang Y and Zhou H Y 2007 Chin. Phys. 16 2149
[13] Long G L, Deng F G, Wang C, Li X H, Wen K and Wang W Y 2007 Front. Phys. Chin. 2 251
[14] Qin S J, Wen Q Y, Meng L M and Zhu F C 2009 Sci. Chin. G 52 1208
[15] Gu B, Zhang C Y, Cheng G S and Huang Y G 2011 Sci. Chin. G 54 942
[16] Beige A, Englert B G, Kurtsiefer C and Weinfurter H 2002 Acta Phys. Pol. A 101 357
[17] Yan F L and Zhang X 2004 Eur. Phys. J. B 41 75
[18] Gao T, Yan F L and Wang Z X 2004 Nuovo Cimento Della Societa Italiana Di Fisica B 119 313
[19] Man Z X, Zhang Z J and Li Y 2005 Chin. Phys. Lett. 22 18
[20] Gao T, Yan F L and Wang Z X 2005 Chin. Phys. 14 893
[21] Gao T, Yan F L and Wang Z X 2005 J. Phys. A: emphMath. Gen. 38 5761
[22] Gao T, Yan F L and Wang Z X 2005 Int. J. Mod. Phys. C 16 1293
[23] Cao H J and Song H S 2006 Chin. Phys. Lett. 23 290
[24] Li X H, Deng F G, Li C Y, Liang Y J, Zhou P and Zhou H Y 2006 J. Korean Phys. Soc. 49 1354
[25] Zhu A D, Xia Y, Fan Q B and Zhang S L 2006 Phys. Rev. A 73 022338
[26] Li X H, Deng F G and Zhou H Y 2006 Phys. Rev. A 74 054302
[27] Wang C, Li Y S and Long G L 2006 Commun. Theor. Phys. 46 440
[28] Yang J, Wang C and Zhang R 2010 Chin. Phys. B 19 110306
[29] Zhang X L, Zhang Y X and Wei H 2009 Chin. Phys. B 18 435
[30] Liu W J, Chen H W, Ma T H, Li Z Q, Liu Z H and Hu W B 2009 Chin. Phys. B 18 4105
[31] Wang J, Zhang Q and Tang C J 2006 Phys. Lett. A 358 256
[32] Gu B, Pei S X, Song B and Zhong K 2009 Sci. Chin. G 52 1913
[33] Cao W F, Yang Y G and Wen Q Y 2010 Sci. Chin. G 53 1271
[34] W'ojcik A 2003 Phys. Rev. Lett. 90 157901
[35] Wang W Y, Wang C, Zhang G Y and Long G L 2009 Chin. Sci. Bull. 54 158
[36] Deng F G and Long G L 2006 Commun. Theor. Phys. 46 443
[37] Hao L, Wang C and Long G L 2010 J. Phys. B 43 125502
[38] Wen K and Long G L 2010 Int. J. Quantum Inform. 8 697
[39] Simon C and Pan J W 2002 Phys. Rev. Lett. 89 257901
[40] Sheng Y B, Deng F G and Zhou H Y 2008 Phys. Rev. A 77 042308
[41] Xiao L, Wang C, Zhang W, Huang Y D, Peng J D and Long G L 2008 Phys. Rev. A 77 042315
[42] Wang C, Sheng Y B, Li X H, Deng F G, Zhang W and Long G L 2009 Sci. Chin.: Tech. Sci. 52 3464
[43] Sheng Y B and Deng F G 2010 Phys. Rev. A 81 032307
[44] Sheng Y B and Deng F G 2010 Phys. Rev. A 82 044305
[45] Barreiro J T, Wei T C and Kwiat P G 2008 Nature Phys. 4 282
[46] Wang W Y, Wang C and Long G L 2009 Int. J. Quantum Inform. 7 529
[47] Sheng Y B, Deng F G and Long G L 2010 Phys. Rev. A 82 032318
[48] Wang T J, Li T, Du F F and Deng F G 2011 Chin. Phys. Lett. 28 040305, arXiv: 1103.0471
[1] Measurement-device-independent one-step quantum secure direct communication
Jia-Wei Ying(应佳伟), Lan Zhou(周澜), Wei Zhong(钟伟), and Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2022, 31(12): 120303.
[2] Deterministic nondestructive state analysis for polarization-spatial-time-bin hyperentanglement with cross-Kerr nonlinearity
Hui-Rong Zhang(张辉荣), Peng Wang(王鹏), Chang-Qi Yu(于长琦), and Bao-Cang Ren(任宝藏). Chin. Phys. B, 2021, 30(3): 030304.
[3] Two-step growth of VSe2 films and their photoelectric properties
Yu Zeng(曾玉), Shengli Zhang(张生利), Xiuling Li(李秀玲), Jianping Ao(敖建平), Yun Sun(孙云), Wei Liu(刘玮), Fangfang Liu(刘芳芳), Peng Gao(高鹏), Yi Zhang(张毅). Chin. Phys. B, 2019, 28(5): 058101.
[4] Multiple-image encryption by two-step phase-shifting interferometry and spatial multiplexing of smooth compressed signal
Xue Zhang(张学), Xiangfeng Meng(孟祥锋), Yurong Wang(王玉荣), Xiulun Yang(杨修伦), Yongkai Yin(殷永凯). Chin. Phys. B, 2018, 27(7): 074205.
[5] Two-step quantum secure direct communication scheme with frequency coding
Xue-Liang Zhao(赵学亮), Jun-Lin Li(李俊林), Peng-Hao Niu(牛鹏皓), Hong-Yang Ma(马鸿洋), Dong Ruan(阮东). Chin. Phys. B, 2017, 26(3): 030302.
[6] Temperature-dependent photoluminescence on organic-inorganicmetal halide perovskite CH3NH3PbI3-xClx prepared onZnO/FTO substrates using a two-step method
Shiwei Zhuang(庄仕伟), Deqian Xu(徐德前), Jiaxin Xu(徐佳新), Bin Wu(伍斌), Yuantao Zhang(张源涛), Xin Dong(董鑫), Guoxing Li(李国兴), Baolin Zhang(张宝林), Guotong Du(杜国同). Chin. Phys. B, 2017, 26(1): 017802.
[7] Cryptanalysis of quantum broadcast communication and authentication protocol with a one-time pad
Ya Cao(曹雅), Fei Gao(高飞). Chin. Phys. B, 2016, 25(11): 110305.
[8] Faithful deterministic secure quantum communication and authentication protocol based on hyperentanglement against collective noise
Chang Yan (昌燕), Zhang Shi-Bin (张仕斌), Yan Li-Li (闫丽丽), Han Gui-Hua (韩桂华). Chin. Phys. B, 2015, 24(8): 080306.
[9] Robust quantum secure direct communication and authentication protocol against decoherence noise based on six-qubit DF state
Chang Yan (昌燕), Zhang Shi-Bin (张仕斌), Yan Li-Li (闫丽丽), Han Gui-Hua (韩桂华). Chin. Phys. B, 2015, 24(5): 050307.
[10] Quantum secure direct communication network with hyperentanglement
Chang Ho Hong, Jino Heo, Jong In Lim, Hyung Jin Yang. Chin. Phys. B, 2014, 23(9): 090309.
[11] Complete hyperentangled state analysis and generation of multi-particle entanglement based on charge detection
Ji Yan-Qiang (计彦强), Jin Zhao (金钊), Zhu Ai-Dong (朱爱东), Wang Hong-Fu (王洪福), Zhang Shou (张寿). Chin. Phys. B, 2014, 23(5): 050306.
[12] Quantum broadcast communication and authentication protocol with a quantum one-time pad
Chang Yan (昌燕), Xu Chun-Xiang (许春香), Zhang Shi-Bin (张仕斌), Yan Li-Li (闫丽丽). Chin. Phys. B, 2014, 23(1): 010305.
[13] Quantum steganography with large payload based on dense coding and entanglement swapping of Greenberger-Horne-Zeilinger states
Ye Tian-Yu (叶天语), Jiang Li-Zhen (蒋丽珍). Chin. Phys. B, 2013, 22(5): 050309.
[14] The influence of interfacial barrier engineering on the resistance switching of In2O3:SnO2/TiO2/In2O3:SnO2 device
Liu Zi-Yu(刘紫玉), Zhang Pei-Jian(张培健), Meng Yang(孟洋), Li Dong(李栋), Meng Qing-Yu(孟庆宇), Li Jian-Qi(李建奇), and Zhao Hong-Wu(赵宏武) . Chin. Phys. B, 2012, 21(4): 047302.
[15] Fault tolerant quantum secure direct communication with quantum encryption against collective noise
Huang Wei (黄伟), Wen Qiao-Yan (温巧燕), Jia Heng-Yue (贾恒越), Qin Su-Juan (秦素娟), Gao Fei (高飞). Chin. Phys. B, 2012, 21(10): 100308.
No Suggested Reading articles found!