Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(10): 100305    DOI: 10.1088/1674-1056/20/10/100305
GENERAL Prev   Next  

A practical two-way system of quantum key distribution with untrusted source

Chen Ming-Juan(陈明娟) and Liu Xiang(刘翔)
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Department of Physics, Hunan Normal University, Changsha 410081, China
Abstract  The most severe problem of a two-way "plug-and-play" (p & p) quantum key distribution system is that the source can be controlled by the eavesdropper. This kind of source is defined as an üntrusted source". This paper discusses the effects of the fluctuation of internal transmittance on the final key generation rate and the transmission distance. The security of the standard BB84 protocol, one-decoy state protocol, and weak+vacuum decoy state protocol, with untrusted sources and the fluctuation of internal transmittance are studied. It is shown that the one-decoy state is sensitive to the statistical fluctuation but weak+vacuum decoy state is only slightly affected by the fluctuation. It is also shown that both the maximum secure transmission distance and final key generation rate are reduced when Alice's laboratory transmittance fluctuation is considered.
Keywords:  statistic fluctuation      untrusted source      quantum key distribution  
Received:  05 November 2010      Revised:  17 April 2011      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11074072).

Cite this article: 

Chen Ming-Juan(陈明娟) and Liu Xiang(刘翔) A practical two-way system of quantum key distribution with untrusted source 2011 Chin. Phys. B 20 100305

[1] Gottesman D, Lo H K, Lütkenhaus N and Preskill J 2004 Quantum Inform. Comput. 4 325
[2] Inamori H, Lütkenhaus N and Mayers D 2007 Eur. Phys. J. D 41 599
[3] Zhao F, Fu M X, Lu Y Q and Liu S H 2007 Chin. Phys. 16 3402
[4] Jiao R Z, Feng C X and Ma H Q 2009 Chin. Phys. B 18 915
[5] Muller A, Herzog T, Hutter B, Tittle W, Zbinden H and Gisin N 1997 Appl. Phys. Lett. 70 793
[6] Zbinden H, Gautier J D, Gisin N, Hutter B, Muller A and Tittel W 1997 Electron. Lett. 33 586
[7] Stucki D, Gisin N, Guinnard O, Ribordy G and Zbinden H 2002 New. J. Phys. 4 41
[8] Zhao Y, Qi B, Ma X F, Lo H K and Qian L 2006 Phys. Rev. Lett. 96 070502
[9] Lü H, Chen A X and Yan X D 2007 Chin. Phys. 16 2862
[10] Sun S H, Ma H Q, Han J J, Liang L M and Li C Z 2010 Opt. Lett. 35 1203
[11] Liu Q and Tan Y G 2011 Chin. Phys. B 20 040303
[12] Wang X B, Peng C Z, Zhang J, Yang L and Pan J W 2008 Phys. Rev. A 77 042311
[13] Zhao Y, Qi B and Lo H K 2008 Phys. Rev. A 77 052327
[14] Peng X, Jiang H, Xu B, Ma X F and Gou H 2008 Opt. Lett. 33 2077
[15] Peng X, Xu B and Gou H 2010 Phys. Rev. A 81 042320
[16] Lütkenhaus N and Jahma M 2002 New. J. Phys. 4 44
[17] Bennett C H and Brassard G 1984 Proceedings of IEEE, International Conference on Computers, Systems, and Singal Processing (New York: IEEE) p. 175
[18] Ma X F, Qi B, Zhao Y and Lo H K 2005 Phys. Rev. A 72 012326
[19] Gobby C, Yuan Z L and Shields A J 2004 Appl. Phys. Lett. 84 3762
[20] Hwang W Y 2003 Phys. Rev. Lett. 91 057901
[21] Hu H P, Wang J D, Huang Y X, Liu S H and Lu W 2010 Acta Phys. Sin. 59 287 (in Chinese)
[22] Mi J L, Wang F Q, Lin Q Q and Liang R S 2008 Chin. Phys. B 17 1178
[23] Xu F X, Wang S, Han Z F and Guo G C 2010 Chin. Phys. B 19 100312
[24] Wang X B 2005 Phys. Rev. Lett. 94 230503
[25] Wang X B 2005 Phys. Rev. A 72 012322
[26] Sun S H, Liang L M and Li C Z 2009 Phys. Lett. A 373 2533
[27] Jiao R Z and Zhang W H 2009 Acta Phys. Sin. 58 2189 (in Chinese)
[1] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[2] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[3] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[4] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[5] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[6] Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明). Chin. Phys. B, 2022, 31(6): 064212.
[7] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[8] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
[9] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[10] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[11] Realization of simultaneous balanced multi-outputs for multi-protocols QKD decoding based onsilica-based planar lightwave circuit
Jin You(游金), Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2021, 30(8): 080302.
[12] Continuous-variable quantum key distribution based on photon addition operation
Xiao-Ting Chen(陈小婷), Lu-Ping Zhang(张露萍), Shou-Kang Chang(常守康), Huan Zhang(张欢), and Li-Yun Hu(胡利云). Chin. Phys. B, 2021, 30(6): 060304.
[13] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[14] Three-party reference frame independent quantum key distribution protocol
Comfort Sekga and Mhlambululi Mafu. Chin. Phys. B, 2021, 30(12): 120301.
[15] Reference-frame-independent quantum key distribution of wavelength division multiplexing with multiple quantum channels
Zhongqi Sun(孙钟齐), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), Jipeng Wang(王吉鹏), Zhenhua Li(李振华), Fen Zhou(周芬), Yuqing Huang(黄雨晴), and Haiqiang Ma(马海强). Chin. Phys. B, 2021, 30(11): 110303.
No Suggested Reading articles found!