Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(1): 014701    DOI: 10.1088/1674-1056/20/1/014701
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Effect of E × B electron drift and plasma discharge in dc magnetron sputtering plasma

Sankar Moni Borah,Arup Ratan Pal,Heremba Bailung,andJoyanti Chutia
Plasma Physics Laboratory, Material Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati 781035, Assam, India
Abstract  Study of electron drift velocity caused by E×B motion is done with the help of a Mach probe in a dc cylindrical magnetron sputtering system at different plasma discharge parameters like discharge voltage, gas pressure and applied magnetic field strength. The interplay of the electron drift with the different discharge parameters has been investigated. Strong radial variation of the electron drift velocity is observed and is found to be maximum near the cathode and it decreases slowly with the increase of radial distance from the cathode. The sheath electric field, E measured experimentally from potential profile curve using an emissive probe is contributed to the observed radial variation of the electron drift velocity. The measured values of the drift velocities are also compared with the values from the conventional theory using the experimental values of electric and magnetic fields. This study of the drift velocity variation is helpful in providing a useful insight for determining the discharge conditions and parameters for sputter deposition of thin film.
Keywords:  electron drift velocity      Mach probe      cylindrical magnetron      sputtering  
Received:  09 June 2010      Revised:  26 July 2010      Accepted manuscript online: 
PACS:  47.80.Cb (Velocity measurements)  
  52.35.Kt (Drift waves)  
  84.40.Fe (Microwave tubes (e.g., klystrons, magnetrons, traveling-wave, backward-wave tubes, etc.))  
Fund: Project supported by the Council of Scientific and Industrial Research–Senior Research Fellowship, Government of India grant (Award No. 9/835(6)/2008/EMR-I).

Cite this article: 

Sankar Moni Borah,Arup Ratan Pal,Heremba Bailung,andJoyanti Chutia Effect of E × B electron drift and plasma discharge in dc magnetron sputtering plasma 2011 Chin. Phys. B 20 014701

[1] Borah S M, Bailung H, Pal A R and Chutia J 2008 J. Phys. D: Appl. Phys. 41 195205
[2] Borah S M, Pal A R, Bailung H and Chutia J 2008 Appl. Surf. Sci. 254 5760
[3] Wendt A E, Lieberman M A and Meuth H 1988 J. Vac. Sci. Technol. A 6 1827
[4] Sheridan T E, Goeckner M J and Goree J 1990 J. Vac. Sci. Technol. A 8 30
[5] Riemann K U 1992 Phys. Fluids B 4 2693
[6] Kakati H, Pal A R, Bailung H and Chutia J 2006 J. Appl. Phys. 100 083303
[7] Oksuz L and Hershkowitz N 2004 Plasma Sources Sci. Technol. 13 263
[8] Kato I, Nakano Y and Yamaguchi N 2000 Jpn. J. Appl. Phys. Part 1-Regular Papers Short Notes Rev. Papers 39 6404
[9] Fisher E R 2002 Plasma Sources Sci. Technol. (Special Issue) 11 A105
[10] Koltai L, Hildebrandt D, Bakos J S and Bachmann P 1990 J. Nucl. Mater. 176 1044
[11] Hutchinson I H 1988 Phys. Rev. A 37 4358
[12] Chung K S and Hutchinson I H 1988 Phys. Rev. A bf 38 4721
[13] Gunn J P, Boucher C, Devynck P, Duran I, Dyabilin K, Horacek J, Hron M, Stokel J, Van Oost G, Van Goubergen H and Zacek F 2001 it Phys. Plasmas 8 1995
[14] Pal A R, Chutia J and Bailung H 2004 Phys. Plasmas bf 11 4719
[15] Adhikary N C, Pal A R, Bailung H and Chutia J 2006 Phys. Lett. A 350 380
[16] Sheridan T E, Goeckner M J and Goree J 1998 J. Vac. Sci. Technol. A 16 2173
[17] Bradley J W, Thompson S and Aranda Gonzalvo Y 2001 Plasma Sources Sci. Technol. 10 490
[18] Rossnagel S M and Kaufman H R 1987 J. Vac. Sci. Technol. A 5 88
[19] Rossnagel S M and Kaufman H R 1987 J. Vac. Sci. Technol. A 5 2276
[20] Fujita H, Yagura S, Ueno H and Nagano M 1986 J. Phys. D: Appl. Phys. 19 1699
[21] Kakati H, Pal A R, Bailung H and Chutia J 2007 J. Phys. D: Appl. Phys. 40 6865
[22] Yamada M and Hendel H W 1978 Phys. Fluids bf 21 1555
[23] Coakley P, Hershkowitz N, Hubbard R and Joyce G 1978 Phys. Rev. Lett. 40 230
[1] Effects of preparation parameters on growth and properties of β-Ga2O3 film
Zi-Hao Chen(陈子豪), Yong-Sheng Wang(王永胜), Ning Zhang(张宁), Bin Zhou(周兵), Jie Gao(高洁), Yan-Xia Wu(吴艳霞), Yong Ma(马永), Hong-Jun Hei(黑鸿君), Yan-Yan Shen(申艳艳), Zhi-Yong He(贺志勇), and Sheng-Wang Yu(于盛旺). Chin. Phys. B, 2023, 32(1): 017301.
[2] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[3] Ru thickness-dependent interlayer coupling and ultrahigh FMR frequency in FeCoB/Ru/FeCoB sandwich trilayers
Le Wang(王乐), Zhao-Xuan Jing(荆照轩), Ao-Ran Zhou(周傲然), and Shan-Dong Li(李山东). Chin. Phys. B, 2022, 31(8): 086201.
[4] Structure, phase evolution and properties of Ta films deposited using hybrid high-power pulsed and DC magnetron co-sputtering
Min Huang(黄敏), Yan-Song Liu(刘艳松), Zhi-Bing He(何智兵), and Yong Yi(易勇). Chin. Phys. B, 2022, 31(6): 066101.
[5] Experimental investigation on divertor tungsten sputtering with neon seeding in ELMy H-mode plasma in EAST tokamak
Dawei Ye(叶大为), Fang Ding(丁芳), Kedong Li(李克栋), Zhenhua Hu(胡振华), Ling Zhang(张凌), Xiahua Chen(陈夏华), Qing Zhang(张青), Pingan Zhao(赵平安), Tao He(贺涛), Lingyi Meng(孟令义), Kaixuan Ye(叶凯萱), Fubin Zhong(钟富彬), Yanmin Duan(段艳敏), Rui Ding(丁锐), Liang Wang(王亮), Guosheng Xu(徐国盛), Guangnan Luo(罗广南), and EAST team. Chin. Phys. B, 2022, 31(6): 065201.
[6] Comparative study of high temperature anti-oxidation property of sputtering deposited stoichiometric and Si-rich SiC films
Hang-Hang Wang(王行行), Wen-Qi Lu(陆文琪), Jiao Zhang(张娇), and Jun Xu(徐军). Chin. Phys. B, 2022, 31(4): 048103.
[7] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[8] Sputtered SnO2 as an interlayer for efficient semitransparent perovskite solar cells
Zheng Fang(方正), Liu Yang(杨柳), Yongbin Jin(靳永斌), Kaikai Liu(刘凯凯), Huiping Feng(酆辉平), Bingru Deng(邓冰如), Lingfang Zheng(郑玲芳), Changcai Cui(崔长彩), Chengbo Tian(田成波), Liqiang Xie(谢立强), Xipeng Xu(徐西鹏), and Zhanhua Wei(魏展画). Chin. Phys. B, 2022, 31(11): 118801.
[9] Development of ZnTe film with high copper doping efficiency for solar cells
Xin-Lu Lin(林新璐), Wen-Xiong Zhao(赵文雄), Qiu-Chen Wu(吴秋晨), Yu-Feng Zhang(张玉峰), Hasitha Mahabaduge, and Xiang-Xin Liu(刘向鑫). Chin. Phys. B, 2022, 31(10): 108802.
[10] Effects of post-annealing on crystalline and transport properties of Bi2Te3 thin films
Qi-Xun Guo(郭奇勋), Zhong-Xu Ren(任中旭), Yi-Ya Huang(黄意雅), Zhi-Chao Zheng(郑志超), Xue-Min Wang(王学敏), Wei He(何为), Zhen-Dong Zhu(朱振东), and Jiao Teng(滕蛟). Chin. Phys. B, 2021, 30(6): 067307.
[11] Cathodic shift of onset potential on TiO2 nanorod arrays with significantly enhanced visible light photoactivity via nitrogen/cobalt co-implantation
Xianyin Song(宋先印), Hongtao Zhou(周洪涛), and Changzhong Jiang(蒋昌忠). Chin. Phys. B, 2021, 30(5): 058505.
[12] CdS/Si nanofilm heterojunctions based on amorphous silicon films: Fabrication, structures, and electrical properties
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), Hong-Chun Huang(黄宏春), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(2): 026101.
[13] RF magnetron sputtering induced the perpendicular magnetic anisotropy modification in Pt/Co based multilayers
Runze Li(李润泽), Yucai Li(李予才), Yu Sheng(盛宇), and Kaiyou Wang(王开友). Chin. Phys. B, 2021, 30(2): 028506.
[14] Band offsets and electronic properties of the Ga2O3/FTO heterojunction via transfer of free-standing Ga2O3 onto FTO/glass
Xia Wang(王霞), Wei-Fang Gu(古卫芳), Yong-Feng Qiao(乔永凤), Zhi-Yong Feng(冯志永), Yue-Hua An(安跃华), Shao-Hui Zhang(张少辉), and Zeng Liu(刘增). Chin. Phys. B, 2021, 30(11): 114211.
[15] Influence of CdS films synthesized by different methods on the photovoltaic performance of CdTe/CdS thin film solar cells
Jun Wang(汪俊), Yuquan Wang(王玉全), Cong Liu(刘聪), Meiling Sun(孙美玲), Cao Wang(王操), Guangchao Yin(尹广超), Fuchao Jia(贾福超), Yannan Mu(牟艳男), Xiaolin Liu(刘笑林), Haibin Yang(杨海滨). Chin. Phys. B, 2020, 29(9): 098802.
No Suggested Reading articles found!