Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(9): 097801    DOI: 10.1088/1674-1056/19/9/097801

Role of nitrogen and oxygen in emission of Si quantum dots formed by pulse laser

Huang Wei-Qi(黄伟其)a), Liu Jia-Xing(刘家兴)a), Cai Cheng-Lan(蔡成兰)a), Lü Quan(吕泉)a), Liu Shi-Rong(刘世荣)b)*, and Qin Chao-Jian(秦朝建)b)
a Institute of Nanophotonic Physics, Guizhou University, Guiyang 550025, China; b State Key Laboratory of Ore Deposit, Geochemistry Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550003, China
Abstract  Silicon quantum dots fabricated by nanosecond pulsed laser in nitrogen, oxygen or air atmosphere have enhanced photoluminescence (PL) emission with the stimulated emission observed at about 700 nm. It is difficult to distinguish between the photoluminescence peaks emitted from samples prepared in different atmospheres. The reason for the appearance of similar peaks may be the similar distribution of the localised states in the gap for different samples when silicon dangling bonds of quantum dots are passivated by nitrogen or oxygen. It is revealed that both the kind and the density of passivated bonds on quantum dot surface prepared in oxygen or nitrogen have a strong influence on the enhancement of PL emission.
Keywords:  nitrogen and oxygen      quantum dots      stimulated emission      localised states  
Received:  11 December 2009      Revised:  01 April 2010      Accepted manuscript online: 
PACS:  7845  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10764002 and 60966002), and by the National Key Laboratory of Surface Physics at Fudan University.

Cite this article: 

Huang Wei-Qi(黄伟其), Liu Jia-Xing(刘家兴), Cai Cheng-Lan(蔡成兰), Lü Quan(吕泉), Liu Shi-Rong(刘世荣), and Qin Chao-Jian(秦朝建) Role of nitrogen and oxygen in emission of Si quantum dots formed by pulse laser 2010 Chin. Phys. B 19 097801

[1] Ashoori R C 1996 wxNature379 413
[2] Alivisatos A P 1996 wxScience271 933
[3] Stephanie M R and Matti M 2002 wxRev. Mod. Phys.74 1283
[4] Pavesi L 2000 wxNature408 440
[5] Huang W Q, Jin F, Wang H X, Xu L, Wu K Y, Liu S R and Qin C J 2008 wxAppl. Phys. Lett.92 221910
[6] Giuseppe Faraci, Santo Gibilisco, Agata R. Pennisi, Giorgia Franz'o, Salvatore La Rosa and Luca Lozzi 2008 wxPhys. Rev. B78 245425
[7] Huang W Q, Liu S R and Xu L 2007 wxJ. Appl. Phys.102 053517
[8] Huang W Q, Zhang R T, Wang H X, Jin F, Xu L, Qin S J, Wu K Y, Liu S R and Qin C J 2008 wxOpt. Commun.281 5229
[9] Huang W Q, Wang H X, Jin F, Wang K Y, Liu S R, Qin C J and Qin S J 2008 wxChin. Phys. B17 3753
[1] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[2] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[3] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[4] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[5] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[6] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[7] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
[8] Exciton emission dynamics in single InAs/GaAs quantum dots due to the existence of plasmon-field-induced metastable states in the wetting layer
Junhui Huang(黄君辉), Hao Chen(陈昊), Zhiyao Zhuo(卓志瑶), Jian Wang(王健), Shulun Li(李叔伦), Kun Ding(丁琨), Haiqiao Ni(倪海桥), Zhichuan Niu(牛智川), Desheng Jiang(江德生), Xiuming Dou(窦秀明), and Baoquan Sun(孙宝权). Chin. Phys. B, 2021, 30(9): 097805.
[9] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[10] Suppression of leakage effect of Majorana bound states in the T-shaped quantum-dot structure
Wei-Jiang Gong(公卫江), Yu-Hang Xue(薛宇航), Xiao-Qi Wang(王晓琦), Lian-Lian Zhang(张莲莲), and Guang-Yu Yi(易光宇). Chin. Phys. B, 2021, 30(7): 077307.
[11] Phase- and spin-dependent manipulation of leakage of Majorana mode into double quantum dot
Fu-Bin Yang(羊富彬), Gan Ren(任淦), and Lin-Guo Xie(谢林果). Chin. Phys. B, 2021, 30(7): 078505.
[12] Anisotropic exciton Stark shift in hemispherical quantum dots
Shu-Dong Wu(吴曙东). Chin. Phys. B, 2021, 30(5): 053201.
[13] Zebrafish imaging and two-photon fluorescence imaging using ZnSe quantum dots
Nan-Nan Zhang(张楠楠), Li-Ya Zhou(周立亚), Xiao Liu(刘潇), Zhong-Chao Wei(韦中超), Hai-Ying Liu(刘海英), Sheng Lan(兰胜), Zhao Meng(孟钊), and Hai-Hua Fan(范海华). Chin. Phys. B, 2021, 30(4): 044204.
[14] Electron transfer properties of double quantum dot system in a fluctuating environment
Lujing Jiang(姜露静), Kang Lan(蓝康), Zhenyu Lin(林振宇), and Yanhui Zhang(张延惠). Chin. Phys. B, 2021, 30(4): 040307.
[15] Investigation of fluorescence resonance energy transfer ultrafast dynamics in electrostatically repulsed and attracted exciton-plasmon systems
Hong-Yu Tu(屠宏宇), Ji-Chao Cheng(程基超), Gen-Cai Pan(潘根才), Lu Han(韩露), Bin Duan(段彬), Hai-Yu Wang(王海宇), Qi-Dai Chen(陈岐岱), Shu-Ping Xu(徐抒平), Zhen-Wen Dai(戴振文), and Ling-Yun Pan(潘凌云). Chin. Phys. B, 2021, 30(2): 027802.
No Suggested Reading articles found!