Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(9): 090702    DOI: 10.1088/1674-1056/19/9/090702
GENERAL Prev   Next  

Wavelength dependence four-wave mixing spectroscopy in a micrometric atomic vapour

Li Yuan-Yuan(李院院)a)b)†, Li Li(李莉)a), Zhang Yan-Peng(张彦鹏)c), and Bi Si-Wen(毕思文)b)
a Institute of Optics & Electronics, Department of Physics, Xi'an University of Arts and Science, Xi'an 710065, China; b State Key Laboratory of Transient Optics and Technology, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710068, China; c Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  This paper presents a theoretical study of wavelength dependence four-wave-mixing (FWM) spectroscopy in a micrometric thin atomic vapour. It compares three cases termed as mismatched case I, matched case and mismatched case II for the probe wavelength less, equal and greater than the pump wavelength respectively. It finds that Dicke-narrowing can overcome width broadening induced by Doppler effects and polarisation interference of thermal atoms, and high resolution FWM spectra can be achieved both in matched and mismatched wavelength for many cases. It also finds that the magnitude of the FWM signal can be dramatically modified to be suppressed or to be enhanced in comparison with that of matched wavelength in mismatched case I or II. The width narrowing and the magnitude suppression or enhancement can be demonstrated by considering enhanced contribution of slow atoms induced by atom-wall collision and transient effect of atom-light interaction in a micrometric thin vapour.
Keywords:  four-wave mixing      wavelength match      Dicke-narrowing      polarisation interference  
Received:  28 January 2010      Revised:  09 March 2010      Accepted manuscript online: 
PACS:  0765  
  6800  
Fund: Project supported from the Major Program of Science Foundation of Xi'an University of Arts and Science.

Cite this article: 

Li Yuan-Yuan(李院院), Li Li(李莉), Zhang Yan-Peng(张彦鹏), and Bi Si-Wen(毕思文) Wavelength dependence four-wave mixing spectroscopy in a micrometric atomic vapour 2010 Chin. Phys. B 19 090702

[1] Ai B, Glassner D S and Knize R J 1994 Phys. Rev. A 50 3345
[2] Briaudeau S, Bloch D and Ducloy M 1996 Europhys. Lett. 35 337
[3] Sarkisyan D, Varzhapetyan T, Sarkisyan A, Malakyan Yu, Papoyan A, Lezama A, Bloch D and Ducloy M 2004 Phys. Rev. A 69 065802
[4] Sargsyan A, Sarkisyan D and Papoyan A 2006 Phys. Rev. A 73 033803
[5] Andreeva C, Cartaleva S, Petrov L, Saltiel S, Sarkisyan D, Varzhapetyan T, Bloch D and Ducloy M 2007 Phys. Rev. A 76 013837
[6] Boon J, Zekou E, McGloin D and Dunn M 1999 Phys. Rev. A 59 4675
[7] Wu Y, Saldana J and Zhu Y 2003 Phys. Rev. A 67 013811
[8] Zhang Y, Brown Andy W and Xiao M 2007 Phys. Rev. Lett. 99 123603
[9] Zuo Z, Sun J, Liu X, Wu L and Fu P 2007 Phys. Rev. A 75 023805
[10] Failache H, Lenci L, Lezama A, Bloch D and Ducloy M 2007 Phys. Rev. A 76 053826
[11] Dutier G, Saltiel S, Bloch D and Ducloy M 2003 J. Opt. Soc. Am. B 20 793
[12] Li Y, Bai J, Li L, Zhang W, Li C, Nie Z, Gan C and Zhang Y 2008 Chin. Phys. Lett. 25 3238
[13] Li Y Y, Hou X, Bai J, Yan J F, Gan C L and Zhang Y P 2008 Chin. Phys. B 17 2885
[14] Li Y Y, Zhou Y and Zhang G Z 2006 Chin. Phys. 15 985 endfootnotesize
[1] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[2] Controllable four-wave mixing response in a dual-cavity hybrid optomechanical system
Lei Shang(尚蕾), Bin Chen(陈彬), Li-Li Xing(邢丽丽), Jian-Bin Chen(陈建宾), Hai-Bin Xue(薛海斌), and Kang-Xian Guo(郭康贤). Chin. Phys. B, 2021, 30(5): 054209.
[3] A two-mode squeezed light based on a double-pump phase-matching geometry
Xuan-Jian He(何烜坚), Jun Jia(贾俊), Gao-Feng Jiao(焦高锋), Li-Qing Chen(陈丽清), Chun-Hua Yuan(袁春华), Wei-Ping Zhang(张卫平). Chin. Phys. B, 2020, 29(7): 074207.
[4] Coherent 420 nm laser beam generated by four-wave mixing in Rb vapor with a single continuous-wave laser
Hao Liu(刘浩), Jin-Peng Yuan(元晋鹏), Li-Rong Wang(汪丽蓉), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(4): 043203.
[5] Simultaneous polarization separation and switching for 100-Gbps DP-QPSK signals in backbone networks
Yu-Long Su(苏玉龙), Huan Feng(冯欢), Hui Hu(胡辉), Wei Wang(汪伟), Tao Duan(段弢), Yi-Shan Wang(王屹山), Jin-Hai Si(司金海), Xiao-Ping Xie(谢小平), He-Ning Yang(杨合宁), Xin-Ning Huang(黄新宁). Chin. Phys. B, 2019, 28(2): 024216.
[6] Electro-optomechanical switch via tunable bistability and four-wave mixing
Kamran Ullah. Chin. Phys. B, 2019, 28(11): 114209.
[7] Characterize and optimize the four-wave mixing in dual-interferometer coupled silicon microrings
Chao Wu(吴超), Yingwen Liu(刘英文), Xiaowen Gu(顾晓文), Shichuan Xue(薛诗川), Xinxin Yu(郁鑫鑫), Yuechan Kong(孔月婵), Xiaogang Qiang(强晓刚), Junjie Wu(吴俊杰), Zhihong Zhu(朱志宏), Ping Xu(徐平). Chin. Phys. B, 2019, 28(10): 104211.
[8] Enhancement of multiple four-wave mixing via cascaded fibers with discrete dispersion decreasing
Jia-Bao Li(李嘉宝), Ling-Jie Kong(孔令杰), Xiao-Sheng Xiao(肖晓晟), Chang-Xi Yang(杨昌喜). Chin. Phys. B, 2017, 26(6): 064205.
[9] Probe gain via four-wave mixing based on spontaneously generated coherence
Hong Yang(杨红), Ting-gui Zhang(张廷桂), Yan Zhang(张岩). Chin. Phys. B, 2017, 26(2): 024204.
[10] Photon statistics of pulse-pumped four-wave mixing in fiber with weak signal injection
Nan-Nan Liu(刘楠楠), Yu-Hong Liu(刘宇宏), Jia-Min Li(李嘉敏), Xiao-Ying Li(李小英). Chin. Phys. B, 2016, 25(7): 074203.
[11] Observation of multi-Raman gain resonances in rubidium vapor
Jun Liu(刘俊), Dong Wei(卫栋), Jin-wen Wang(王金文), Ya Yu(余娅), Hua-jie Hu(胡华杰), Hong Gao(高宏), Fu-li Li(李福利). Chin. Phys. B, 2016, 25(11): 114204.
[12] Beam propagation method for wide-fieldnonlinear wave mixing microscope
Lv Yong-Gang (吕永钢), Ji Zi-Heng (纪子衡), Yu Wen-Tao (于文韬), Shi Ke-Bin (施可彬). Chin. Phys. B, 2015, 24(9): 094211.
[13] Relationship between electromagnetically-induced transparency and Autler–Townes splitting in a Doppler-broadened system
Pei Li-Ya (裴丽娅), Niu Jin-Yan (牛金艳), Wang Ru-Quan (王如泉), Qu Yi-Zhi (屈一至), Zuo Zhan-Chun (左战春), Wu Ling-An (吴令安), Fu Pan-Ming (傅盘铭). Chin. Phys. B, 2015, 24(7): 074203.
[14] Image information transfer via electromagnetically induced transparency-based slow light
Wang Xiao-Xiao (王潇潇), Sun Jia-Xiang (孙家翔), Sun Yuan-Hang (孙远航), Li Ai-Jun (李爱军), Chen Yi (陈怡), Zhang Xiao-Jun (张晓军), Kang Zhi-Hui (康智慧), Wang Lei (王磊), Wang Hai-Hua (王海华), Gao Jin-Yue (高锦岳). Chin. Phys. B, 2015, 24(7): 074204.
[15] Macroscopic effects in electromagnetically-induced transparency in a Doppler-broadened system
Pei Li-Ya (裴丽娅), Niu Jin-Yan (牛金艳), Wang Ru-Quan (王如泉), Qu Yi-Zhi (屈一至), Wu Ling-An (吴令安), Fu Pan-Ming (傅盘铭), Zuo Zhan-Chun (左战春). Chin. Phys. B, 2015, 24(1): 014205.
No Suggested Reading articles found!