Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(8): 080517    DOI: 10.1088/1674-1056/19/8/080517
GENERAL Prev   Next  

Atomic force microscopy investigation of growth process of organic TCNQ aggregates on SiO2 and mica substrates

Huan Qing, Hu Hao, Pan Li-Da, Xiao Jiang, Du Shi-Xuan, Gao Hong-Jun
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Deposition patterns of tetracyanoquinodimethane (TCNQ) molecules on different surfaces are investigated by atomic force microscopy. A homemade physical vapour deposition system allows the better control of molecule deposition. Taking advantage of this system, we investigate TCNQ thin film growth on both SiO2 and mica surfaces. It is found that dense island patterns form at a high deposition rate, and a unique seahorse-like pattern forms at a low deposition rate. Growth patterns on different substrates suggest that the fractal pattern formation is dominated by molecule–molecule interaction. Finally, a phenomenal "two-branch" model is proposed to simulate the growth process of the seahorse pattern.
Keywords:  tetracyanoquinodimethane      organic molecule deposition      seahorse-like patterns  
Received:  26 January 2010      Revised:  04 February 2010      Published:  15 August 2010
PACS:  81.15.Kk (Vapor phase epitaxy; growth from vapor phase)  
  68.37.Ps (Atomic force microscopy (AFM))  
  68.55.A- (Nucleation and growth)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10774176), and the National Basic Research Program of China (Grant No. 2006CB806202).

Cite this article: 

Huan Qing, Hu Hao, Pan Li-Da, Xiao Jiang, Du Shi-Xuan, Gao Hong-Jun Atomic force microscopy investigation of growth process of organic TCNQ aggregates on SiO2 and mica substrates 2010 Chin. Phys. B 19 080517

[1] B"ohringer M, Morgenstem K, Schneider W D, Berndt R, Mauri F, De Vita A and Car R 1999 Phys. Rev. Lett. 83 324
[2] Rosei F, Schunack M, Jiang P, Gourdon A, Laegsgaard E, Stensgaard I, Joachim C and Besenbacher F 2002 Science 296 328
[3] Theobald J A, Oxtoby N S, Phillips M A, Champness N R and Beton P H 2003 Nature 424 1029
[4] Gao H J, Sohlberg K, Xue Z Q, Chen H Y, Hou S M, Ma L P, Fang X W, Pang S J and Pennycook S J 2000 Phys. Rev. Lett. 84 1780
[5] Gao H J and Gao L 2010 Prog. Surf. Sci. 85 28
[6] Zhang Z Y and Lagally M G 1997 Science 276 377
[7] Heringdorf F J M Z, Reuter M C and Tromp R M 2001 Nature 412 517
[8] Verlaak S, Steudel S, Heremans P, Janssen D and Deleuze M S 2003 Phys. Rev. B 68 195409
[9] Kelley T W, Baude P F, Gerlach C, Ender D E, Muyres D, Haase M A, Vogel D E and Theiss S D 2004 Chem. Mater. 16 4413
[10] Cao G Y, Fang F, Ye C N, Xing X Y, Xu H H, Sun D L and Chen G R 2005 Micron 36 285
[11] Brechignac C, Cahuzac P, Carlier F, Colliex C, Leroux J, Masson A, Yoon B and Landman U 2002 Phys. Rev. Lett. 88 196103
[12] Buzio R, Boragno C, Biscarini F, De Mongeot F B and Valbusa U 2003 Nature Materials 2 233
[13] Pedersen J S and Carneiro K 1987 Rep. Prog. Phys. 50 995
[14] Mondio G, Neri F, Gurro G, Patane S and Compagnini G 1996 J. Mater. Res. 8 2627
[15] Ferraris J, Cowan D O, Walatka V and Perlstein J H 1973 J. Am. Chem. Soc. 95 948
[16] Ueda K, Sugimoto T, Endo S, Toyota N, Kohama M, Yamamoto K, Suenaga Y, Morimoto H, Yamaguchi T, Munakata M, Hosoito N, Kanehisa N, Shibamoto Y and Kai Y 1996 Chem. Phys. Lett. 261 295
[17] Gao H J, Xue Z Q and Wu Q D 1994 Chin. Phys. Lett. 11 766
[18] Gao H J, Xue Z Q and Pang S J 1996 J. Phys. D 29 1868
[19] Figgis B N, Sobolev A N, Kepert C J and Kurmoo M 2001 Acta Crystallogr. C 57 991
[20] Vickers E B, Giles I D and Miller J S 2005 Chem. Mater. 17 1667
[21] Ho K C and Liao J Y 2003 Sensor Actuat. B-Chem. 93 370
[22] Gao H J, Xue Z Q, Wu Q D and Pang S J 1994 J. Mater. Res. 9 2216
[23] Gao H J, Xue Z Q, Wu Q D and Pang S J 1996 Solid State Commun. 97 579
[24] Gao H J, Canright G S, Pang S J, Sandler I M, Xue Z Q and Zhang Z Y 1998 Fractals 6 337
[25] Sandler I M, Canright G S, Zhang Z Y, Gao H J, Xue Z Q and Pang S J 1998 Phys. Lett. A 245 233
[26] Sandler I M, Canright G S, Gao H J, Pang S J, Xue Z Q and Zhang Z Y 1998 Phys. Rev. E 58 6015
[27] Cai J M, Bao L H, Guo W, Cai L, Huan Q, Lian J C, Guo H M, Wang K Z, Shi D X, Pang S J and Gao H J 2007 Chin. Phys. Lett. 24 2918
[28] Cai J M, Zhang Y Y, Hu H, Bao L H, Pan L D, Tang W, Li G, Du S X, Shen J and Gao H J 2010 Chin. Phys. B 19 067101
[29] Qian C J, Li H, Zhong R, Luo M B and Ye G X 2009 Chin. Phys. B 18 1947
[30] Su Y F, Li P X, Chen P, Xu Z F and Zhang X L 2009 Acta Phys. Sin. 58 4531 (in Chinese)
[31] Coe S, Woo W K, Bawendi M and Bulovic V 2002 Nature 420 800
[32] Kobayashi S, Nishikawa T, Takenobu T, Mori S, Shimoda T, Mitani T, Shimotani H, Yoshimoto N, Ogawa S and Iwasa Y 2004 Nature Materials 3 317
[33] Street S C, Xu C and Goodman D W 1997 Ann. Rev. Phys. Chem. 48 43
[34] Hartman H, Sposito G and Yang A 1990 Clays and Clay Minerals 38 337
[1] Semipolar (1122) and polar (0001) InGaN grown on sapphire substrate by using pulsed metal organic chemical vapor deposition
Sheng-Rui Xu(许晟瑞), Ying Zhao(赵颖), Ren-Yuan Jiang(蒋仁渊), Teng Jiang(姜腾), Ze-Yang Ren(任泽阳), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2017, 26(2): 027801.
[2] Nanodots and microwires of ZrO2 grown on LaAlO3 by photo-assisted metal-organic chemical vapor deposition
Feng Guo(郭峰), Xin-Sheng Wang(汪薪生), Shi-Wei Zhuang(庄仕伟), Guo-Xing Li(李国兴), Bao-Lin Zhang(张宝林), Pen-Chu Chou(周本初). Chin. Phys. B, 2016, 25(2): 028103.
[3] High-crystalline GaSb epitaxial films grown on GaAs(001) substrates by low-pressure metal-organic chemical vapor deposition
Wang Lian-Kai, Liu Ren-Jun, Lü You, Yang Hao-Yu, Li Guo-Xing, Zhang Yuan-Tao, Zhang Bao-Lin. Chin. Phys. B, 2015, 24(1): 018102.
[4] Direct growth of graphene on gallium nitride by using chemical vapor deposition without extra catalyst
Zhao Yun, Wang Gang, Yang Huai-Chao, An Tie-Lei, Chen Min-Jiang, Yu Fang, Tao Li, Yang Jian-Kun, Wei Tong-Bo, Duan Rui-Fei, Sun Lian-Feng. Chin. Phys. B, 2014, 23(9): 096802.
[5] Nucleation of GaSb on GaAs (001) by low pressure metal-organic chemical vapor deposition
Wang Lian-Kai, Liu Ren-Jun, Yang Hao-Yu, Lü You, Li Guo-Xing, Zhang Yuan-Tao, Zhang Bao-Lin. Chin. Phys. B, 2014, 23(8): 088110.
[6] Improvement in a-plane GaN crystalline quality using wet etching method
Cao Rong-Tao, Xu Sheng-Rui, Zhang Jin-Cheng, Zhao Yi, Xue Jun-Shuai, Ha Wei, Zhang Shuai, Cui Pei-Shui, Wen Hui-Juan, Chen Xing. Chin. Phys. B, 2014, 23(4): 047804.
[7] Surface saturation control on the formation of wurtzite polytypes in zinc blende SiC nanofilms grown on Si-(100) substrates
Liu Xing-Fang, Sun Guo-Sheng, Liu Bin, Yan Guo-Guo, Guan Min, Zhang Yang, Zhang Feng, Dong Lin, Zheng Liu, Liu Sheng-Bei, Tian Li-Xin, Wang Lei, Zhao Wan-Shun, Zeng Yi-Ping. Chin. Phys. B, 2013, 22(8): 086802.
[8] Study on the relationships between Raman shifts and temperature range for a-plane GaN using temperature-dependent Raman scattering
Wang Dang-Hui, Xu Sheng-Rui, Hao Yue, Zhang Jin-Cheng, Xu Tian-Han, Lin Zhi-Yu, Zhou Hao, Xue Xiao-Yong. Chin. Phys. B, 2013, 22(2): 028101.
[9] Influence of double AlN buffer layers on the qualities of GaN films prepared by metal–organic chemical vapour deposition
Lin Zhi-Yu, Zhang Jin-Cheng, Zhou Hao, Li Xiao-Gang, Meng Fan-Na, Zhang Lin-Xia, Ai Shan, Xu Sheng-Rui, Zhao Yi, Hao Yue. Chin. Phys. B, 2012, 21(12): 126804.
[10] The influence of SixNy interlayer on GaN film grown on Si(111) substrate
Peng Dong-Sheng, Chen Zhi-Gang, Tan Cong-Cong. Chin. Phys. B, 2012, 21(12): 128101.
[11] Luminescence of a GaN grain with a nonpolar and semipolar plane in relation to microstructural characterization
Zhou Xiao-Wei, Xu Sheng-Rui, Zhang Jin-Cheng, Dang Ji-Yuan, Lü Ling, Hao Yue, Guo Li-Xin. Chin. Phys. B, 2012, 21(6): 067803.
[12] Temperature dependences of Raman scattering in different types of GaN epilayers
Xue Xiao-Yong,Xu Sheng-Rui,Zhang Jin-Cheng,Lin Zhi-Yu,Ma Jun-Cai,Liu Zi-Yang,Xue Jun-Shuai,Hao Yue. Chin. Phys. B, 2012, 21(2): 027803.
[13] Stress and morphology of a nonpolar a-plane GaN layer on r-plane sapphire substrate
Xu Sheng-Rui, Hao Yue, Zhang Jin-Cheng, Xue Xiao-Yong, Li Pei-Xian, Li Jian-Ting, Lin Zhi-Yu, Liu Zi-Yang, Ma Jun-Cai, He Qiang, Lü Ling. Chin. Phys. B, 2011, 20(10): 107802.
[14] Gradual variation method for thick GaN heteroepitaxy by hydride vapour phase epitaxy
Du Yan-Hao, Wu Jie-Jun, Luo Wei-Ke, John Goldsmith, Han Tong, Tao Yue-Bin, Yang Zhi-Jian, Yu Tong-Jun, Zhang Guo-Yi. Chin. Phys. B, 2011, 20(9): 098101.
[15] Optical and structural investigation of a-plane GaN layers on r-plane sapphire with nucleation layer optimization
Zhang Jin-Feng, Xu Sheng-Rui, Zhang Jin-Cheng, Hao Yue. Chin. Phys. B, 2011, 20(5): 057801.
No Suggested Reading articles found!