Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(6): 065205    DOI: 10.1088/1674-1056/19/6/065205
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Structural evolution of silicone oil liquid exposed to Ar plasma

Yuan Yuan(袁圆), Ye Chao(叶超), Huang Hong-Wei(黄宏伟), Shi Guo-Feng(施国峰), and Ning Zhao-Yuan(宁兆元)
School of Physics Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
Abstract  Structure properties of silicone oil serving as a liquid substrate exposed to Ar plasma are investigated in this paper. Under the action of energetic Ar ions, the surface of silicone oil liquid substrate exhibits a branch-like fractal aggregation structure, which is related to the structure evolution of silicone oil liquid from Si--O chain to Si--O network. The radicals from the dissociation of silicone oil molecule into the Ar plasma turns the plasma into a reactive environment. Therefore, the structural evolution of silicone oil liquid substrate and the reactive radicals in the plasma space become possible factors to affect the aggregation of nanoparticles and also the structures and the compositions of nanoparticles.
Keywords:  silicone oil liquid substrate      structure evolution      Ar plasma  
Received:  09 November 2009      Accepted manuscript online: 
PACS:  61.25.Em (Molecular liquids)  
  82.30.Lp (Decomposition reactions (pyrolysis, dissociation, and fragmentation))  
  61.46.Df (Structure of nanocrystals and nanoparticles ("colloidal" quantum dots but not gate-isolated embedded quantum dots))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10975105, 10575074 and 10635010).

Cite this article: 

Yuan Yuan(袁圆), Ye Chao(叶超), Huang Hong-Wei(黄宏伟), Shi Guo-Feng(施国峰), and Ning Zhao-Yuan(宁兆元) Structural evolution of silicone oil liquid exposed to Ar plasma 2010 Chin. Phys. B 19 065205

[1] Torimoto T, Okazaki K, Kiyama T, Hirahara K, Tanaka N and Kuwabata S 2006 Appl. Phys. Lett. 89 243117
[2] Ye G X, Michely T, Weidenhof V, Friedrich I and Wuttig M 1998 Phys. Rev. Lett. 81 622
[3] Wagener M and Gunther B 1999 J. Magn. Magn. Mater. 201 41
[4] Ye Q L, Feng C M, Xu X J, Jin J S, Xia A G and Ye G X 2005 J. Appl. Phys. 98 013906
[5] Zhang Y J, Yu S J, Ge H L, Wu L N and Cui Y J 2006 Acta Phys. Sin. 55 5444 (in Chinese)
[6] Mao M, Wang S, Dai Z L and Wang Y N 2007 Chin. Phys. 16 2044
[7] Xu X, Li L S, Liu F, Zhou Q H and Liang R Q 2008 Chin. Phys. B 17 4242
[8] Ji H H, Yu M, Ren L M, Zhang X, Huang R and Zhang Y G 2008 Chin. Phys. B 17 3428
[9] Wu J, Zhang P Y, Sun J Z, Zhang J, Ding Z F and Wang D Z 2008 Chin. Phys. B 17 1848
[10] Ye C, Ning Z Y, Shen M R, Wang H and Gan Z Q 1997 Appl. Phys. Lett. 71 336
[11] Ye C, Ning Z Y, Shen M R, Cheng S H and Gan Z Q 1998 J. Appl. Phys. 83 5978
[12] Zhou N N 2000 Introduction of Organosilicon Polymer (Beijing: Science Press) (in Chinese)
[13] Xu Y J, Ye C, Huang X J, Yuan J, Xing Z Y and Ning Z Y 2008 Chin. Phys. Lett. 25 2942
[14] Georgieva V and Bogaerts A 2005 J. Appl. Phys. 98 023308
[15] Li X S, Bi Z H, Chang D L, Li Z C, Wang S, Xu X, Xu Y, Lu W Q, Zhu A M and Wang Y N 2008 Appl. Phys. Lett. 93 031504
[16] Jones R A L 2008 Soft Condensed Matter (Beijing: Science Press)
[17] Ke Y K and Dong H R 1998 Handbook of Analytical Chemistry: Optical Spectroscopy Analysis (2nd edition) (Beijing: Chemical Industry Press) (in Chinese)
[18] Hsiao H L, Hwang H L, Yang A B, Chen L W and Yew T R 1999 Appl. Surf. Sci. 142 316
[19] Kholodkov A V, Golant K M and Nikolin I V 2003 Microelectron. Eng. 69 365
[20] Clay K J, Speakman S P, Amaratunga G A J and Silva S R P 1996 J. Appl. Phys. 79 7227
[21] Escobar-Alarón L, Camps E, Haro-Poniatowski E, Villagran M and Sanchez C 2002 Appl. Surf. Sci. 197--198 192
[22] Samukawa S and Furuoya S 1993 Appl. Phys. Lett. 63 2044
[23] Nicolazo F, Goullet A, Granier A, Vallé e C, Turban G and Grolleau B 1998 Surf. Coat. Technol. 98 1578
[24] Zambrano G, Riascos H, Prieto P, Restrepo E, Devia A and Rinón C 2003 Surf. Coat. Technol. 172 144
[1] Hydrogen isotopic replacement and microstructure evolution in zirconium deuteride implanted by 150 keV protons
Man Zhao(赵嫚), Mingxu Zhang(张明旭), Tao Wang(王韬), Jiangtao Zhao(赵江涛), Pan Dong(董攀), Zhen Yang(杨振), and Tieshan Wang(王铁山). Chin. Phys. B, 2021, 30(10): 106104.
[2] Preliminary computation of the gap eigenmode of shear Alfvén waves on the LAPD
Lei Chang(苌磊). Chin. Phys. B, 2018, 27(12): 125201.
[3] Size effect in the melting and freezing behaviors of Al/Ti core-shell nanoparticles using molecular dynamics simulations
Jin-Ping Zhang(张金平), Yang-Yang Zhang(张洋洋), Er-Ping Wang(王二萍), Cui-Ming Tang (唐翠明), Xin-Lu Cheng(程新路), Qiu-Hui Zhang(张秋慧). Chin. Phys. B, 2016, 25(3): 036102.
[4] Surface structure evolution of cathode materials for Li-ion batteries
Yingchun Lyu(吕迎春), Yali Liu(刘亚利), Lin Gu(谷林). Chin. Phys. B, 2016, 25(1): 018209.
[5] Microstructure evolution of Cu atomic islands on liquid surfaces in the ambient atmosphere
Zhang Xiao-Fei (张晓飞), Chen Hang (陈杭), Yu Sen-Jiang (余森江). Chin. Phys. B, 2015, 24(7): 076103.
[6] A simulation study of microstructure evolution during solidification process of liquid metal Ni
Liu Hai-Rong(刘海蓉), Liu Rang-Su(刘让苏), Zhang Ai-Long(张爱龙), Hou Zhao-Yang(侯兆阳), Wang Xin(王鑫), and Tian Ze-An(田泽安). Chin. Phys. B, 2007, 16(12): 3747-3753.
[7] The dispersive properties of a dielectric-rod loaded waveguide immersed in a magnetized annular plasma
Li Wei (李伟), Gong Ma-Li (巩马理), Wei Yan-Yu (魏彦玉), Xie Hong-Quan (谢鸿全). Chin. Phys. B, 2004, 13(1): 54-59.
No Suggested Reading articles found!