Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(6): 064214    DOI: 10.1088/1674-1056/19/6/064214
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

High precision Zernike modal gray map reconstruction for liquid crystal corrector

Liu Chaoa, Mu Quan-Quana, Hu Li-Fab, Cao Zhao-Liangb, Xuan Lib
a State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;Graduate School of the Chinese Academy of Sciences, Beijing 100049, China; b State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
Abstract  This paper proposes a new Zernike modal gray map reconstruction algorithm used in the nematic liquid crystal adaptive optics system. Firstly, the new modal algorithm is described. Secondly, a single loop correction experiment was conducted, and it showed that the modal method has a higher precision in gray map reconstruction than the widely used slope method. Finally, the contrast close-loop correction experiment was conducted to correct static aberration in the laboratory. The experimental results showed that the average peak to valley (PV) and root mean square (RMS) of the wavefront corrected by mode method were reduced from 2.501\lambda (\lambda =633~nm) and 0.610\lambda to 0.0334\lambda and 0.00845\lambda , respectively. The corrected PV and RMS were much smaller than those of 0.173\lambda and 0.048\lambda by slope method. The Strehl ratio and modulation transfer function of the system corrected by mode method were much closer to diffraction limit than with slope method. These results indicate that the mode method can take good advantage of the large number of pixels of the liquid crystal corrector to realize high correction precision.
Keywords:  liquid crystal device      adaptive optics      modal gray map reconstruction     
Received:  21 October 2009      Published:  15 June 2010
PACS:  42.79.Kr (Display devices, liquid-crystal devices)  
  42.30.Wb (Image reconstruction; tomography)  
  42.30.Lr (Modulation and optical transfer functions)  
  42.15.Fr (Aberrations)  
Fund: Project supported by the National Natural Science Foundation of China (Grants Nos.~60736042, 60578035 and 50703039) and Science and Technology Cooperation Project between Chinese Academy of Sciences and Jilin Province (Grant No.~2008SYHZ0005).

Cite this article: 

Liu Chao, Mu Quan-Quan, Hu Li-Fa, Cao Zhao-Liang, Xuan Li High precision Zernike modal gray map reconstruction for liquid crystal corrector 2010 Chin. Phys. B 19 064214

[1] Ellerbroek B 1994 J. Opt. Soc. Am. A 11 783
[2] Max C, Olivier S, Friedman H, An J, Avicola K, Beeman B, Bissinger H, Brase J, Erbert G and Gavel D 1997 Science 277 1649
[3] Van D M, Le M D and Macintosh B 2004 Appl. Opt. 43 5458
[4] Jiang B G, Cao Z L, Mu Q Q, Li C and Xia M L 2004 Optics and Precision Engineering 16 1805 (in Chinese)
[5] Chen D, Jones S, Silva D and Olivier S 2007 J. Opt. Soc. Am. A 24 1305
[6] Jiang B G, Cao Z L, Mu Q Q, Hu L F, Li C and Xuan L 2008 Chin. Phys. B 17 4529
[7] Porter J, Queener H M, Lin J E, Thorn K and Awwal A 2006 Adaptive Optics for Vision Science (New York: John Wiley & Sons) p.~122
[8] Hu L H, Xuan L, Liu Y G, Cao Z L, Li D Y and Mu Q Q 2004 Opt. Express 12 6403
[9] Mu Q Q, Cao Z L, Hu L F, Li D Y and Xuan L 2006 Opt. Express 14 8013
[10] Love G D 1997 Appl. Opt. 36 1517
[11] Cao Z L, Mu Q Q, Hu L F. Li D Y, Peng Z H, Liu Y G and Xuan L 2009 Opt. Express 17 2530
[12] Mu Q Q, Cao Z L, Li C, Jiang B G, Hu L F and Xuan L 2008 Opt. Lett. 33 2898
[13] Li C, Xia M L, Jiang B G, Mu Q Q, Cheng S Y and Xuan L 2009 Opt. Commun. 282 1496
[14] Mu Q Q, Cao Z L, Li D Y, Hu L F and Xuan L 2008 Appl. Opt. 47 4297
[15] Thibos L, Applegate R, Schwiegerling J and Webb R 2000 Vision Science and Its Applications 35 232
[1] A slope-based decoupling algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system
Tao Cheng(程涛), Wenjin Liu(刘文劲), Boqing Pang(庞博清), Ping Yang(杨平), Bing Xu(许冰). Chin. Phys. B, 2018, 27(7): 070704.
[2] Co-focus experiment of segmented mirror
Bin Li(李斌), Wen-Hao Yu(于文豪), Mo Chen(陈莫), Jin-Long Tang(唐金龙), Hao Xian(鲜浩). Chin. Phys. B, 2017, 26(6): 060706.
[3] Influence of low temperature on the surface deformation of deformable mirrors
Juncheng You(尤俊成), Chunlin Guan(官春林), Hong Zhou(周虹). Chin. Phys. B, 2017, 26(5): 054215.
[4] A high precision phase reconstruction algorithm for multi-laser guide stars adaptive optics
Bin He(何斌), Li-Fa Hu(胡立发), Da-Yu Li(李大禹), Huan-Yu Xu(徐焕宇), Xing-Yun Zhang(张杏云), Shao-Xin Wang(王少鑫), Yu-Kun Wang(王玉坤), Cheng-Liang Yang(杨程亮), Zhao-Liang Cao(曹召良), Quan-Quan Mu(穆全全), Xing-Hai Lu(鲁兴海), Li Xuan(宣丽). Chin. Phys. B, 2016, 25(9): 094214.
[5] Configuration optimization of laser guide stars and wavefront correctors for multi-conjugation adaptive optics
Li Xuan(宣丽), Bin He(何斌), Li-Fa Hu(胡立发), Da-Yu Li(李大禹), Huan-Yu Xu(徐焕宇), Xing-Yun Zhang(张杏云), Shao-Xin Wang(王少鑫), Yu-Kun Wang(王玉坤), Cheng-Liang Yang(杨程亮), Zhao-Liang Cao(曹召良), Quan-Quan Mu(穆全全), Xing-Hai Lu(鲁兴海). Chin. Phys. B, 2016, 25(9): 094216.
[6] Determining the imaging plane of a retinal capillary layer in adaptive optical imaging
Le-Bao Yang(杨乐宝), Li-Fa Hu(胡立发), Da-Yu Li(李大禹), Zhao-Liang Cao(曹召良), Quan-Quan Mu(穆全全), Ji Ma(马骥), Li Xuan(宣丽). Chin. Phys. B, 2016, 25(9): 094219.
[7] High signal-to-noise ratio sensing with Shack-Hartmann wavefront sensor based on auto gain control of electron multiplying CCD
Zhao-Yi Zhu(朱召义), Da-Yu Li(李大禹), Li-Fa Hu(胡立发), Quan-Quan Mu(穆全全), Cheng-Liang Yang(杨程亮), Zhao-Liang Cao(曹召良), Li Xuan(宣丽). Chin. Phys. B, 2016, 25(9): 090702.
[8] Comparison between iterative wavefront control algorithm and direct gradient wavefront control algorithm for adaptive optics system
Cheng Sheng-Yi, Liu Wen-Jin, Chen Shan-Qiu, Dong Li-Zhi, Yang Ping, Xu Bing. Chin. Phys. B, 2015, 24(8): 084214.
[9] Retinal axial focusing and multi-layer imaging with a liquid crystal adaptive optics camera
Liu Rui-Xue, Zheng Xian-Liang, Li Da-Yu, Xia Ming-Liang, Hu Li-Fa, Cao Zhao-Liang, Mu Quan-Quan, Xuan Li. Chin. Phys. B, 2014, 23(9): 094211.
[10] Experimental demonstration of single-mode fiber coupling using adaptive fiber coupler
Luo Wen, Geng Chao, Wu Yun-Yun, Tan Yi, Luo Qi, Liu Hong-Mei, Li Xin-Yang. Chin. Phys. B, 2014, 23(1): 014207.
[11] Wavefront correction of Ti:sapphire terawatt laser with varying precision of phase conjugation between deformable mirror and wavefront sensor
Yu Liang-Hong, Liang Xiao-Yan, Ren Zhi-Jun, Wang Li, Xu Yi, Lu Xiao-Ming, Yu Guo-Hao. Chin. Phys. B, 2012, 21(1): 014201.
[12] Thermal stability test and analysis of a 20-actuator bimorph deformable mirror
Ning Yu, Zhou Hong, Yu Hao, Rao Chang-Hui, Jiang Wen-Han. Chin. Phys. B, 2009, 18(3): 1089-1095.
[13] Simulated human eye retina adaptive optics imaging system based on a liquid crystal on silicon device
Hu Li-Fa, Xuan Li, Jiang Bao-Guang, Cao Zhao-Liang, Mu Quan-Quan, Li Chao. Chin. Phys. B, 2008, 17(12): 4529-4532.
No Suggested Reading articles found!