Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(6): 064213    DOI: 10.1088/1674-1056/19/6/064213
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Study of second-order nonlinear hyperpolarisability of all-trans-$\beta$-carotene in solutions by linear spectroscopic technique

Fang Wen-Hui(房文汇)a)b), Men Zhi-Wei(门志伟) b), Sun Cheng-Lin(孙成林)a) Qu Guan-Nan(曲冠男)b), Yang Guang(杨光)b), Li Zuo-Wei(里佐威)a)b),Gao Shu-Qin(高淑琴) b), and Lu Guo-Hui(陆国会)b)
a State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130021, China; b College of Physics, Jilin University, Changchun 130021, China
Abstract  This paper demonstrates the second-order nonlinear hyperpolarisability $\gamma$  of all-trans-$\beta$-carotene in different solvents by linear spectroscopic technique that is based on resonance Raman scattering and UV--VIS (Ultraviolet-visible) absorption spectroscopy. Owing to the two-level model well describing the link that exists between the resonance Raman scattering and stimulated Raman scattering, the stimulated Raman polarisability $\alpha_{\rm R}$ can be calculated through the two-photon resonance system. The value of $\gamma$  of all-trans-$\beta$-carotene in carbon bisulfide solution is $6.435\times 10^{-33}$ esu (1 esu of resistance = $8.98755\times10^{11}~\Omega$) that is close to the true value, because the solution of all-trans-$\beta$-carotene in carbon bisulfide satisfies the rigid resonance Raman scattering condition. This method is expected to be worthy of applications to measure the second-order nonlinear hyperpolarisability of a conjugate organic molecule.
Keywords:  all-trans-$\beta$-carotene      second-order nonlinear hyperpolarisability      rigid resonance Raman scattering      UV--VIS absorption spectroscopy  
Received:  04 May 2009      Accepted manuscript online: 
PACS:  78.30.Cp  
  78.40.Dw (Liquids)  
  61.25.Em (Molecular liquids)  
Fund: Project supported by the National Natural Science Foundation of China (Gant Nos.~10774057 and 10974067).

Cite this article: 

Fang Wen-Hui(房文汇), Men Zhi-Wei(门志伟), Sun Cheng-Lin(孙成林) Qu Guan-Nan(曲冠男), Yang Guang(杨光), Li Zuo-Wei(里佐威),Gao Shu-Qin(高淑琴), and Lu Guo-Hui(陆国会) Study of second-order nonlinear hyperpolarisability of all-trans-$\beta$-carotene in solutions by linear spectroscopic technique 2010 Chin. Phys. B 19 064213

[1] Davies P L 1952 Trans. Faraday Soc . 47 789
[2] Bramley R and Le Fevre R J W 1960 J. Chem. Soc. (London) 35 1820
[3] Bramley R and Le Fevre R J W 1962 J. Chem. Soc. (London) 37 56
[4] Hermann J P, Ricard D and Ducuing J 1973 Appl. Phys. Lett. 23 178
[5] Prasad P N and Williams D J 1991 Introducation to Nonlinear Optical Effects in Molecules and Polymers (New York: Wiley) p.~33
[6] Zuo J, Li Z W and Tian Y J 2007 Acta Phys. Sin. 56 889 (in Chinese)
[7] Zhou Z H, Liu L, Wang G Y and Xu Z Z 2006 Chin. Phys. 15 126
[8] Bhattacherjee A B 1998 Bulg. J. Phys. 25 166
[9] Bass M, Bua D, Mozzi R and Monchamp R R 1968 Appl. Phys. Lett. 15 393
[10] Derkacheva L D, Krymona A I and Sopina N P 1970 JETP Lett. 11 319
[11] Jerphagnon J 1971 IEEE J. Quantum Electron. QE-7 42
[12] Gott J R 1971 J. Phys. B 4 116
[13] Davydov B L, Dunina V V, Zolin V F and Koreneva L G 1972 Opt. Spectrosc. 32 118
[14] Gott J R, Musgrave M J P and Murrell J P 1967 Mol. Phys. 12 295
[15] Wu C K, Wang Z Y and Fan J Y 1980 Acta Phys. Sin . 29 508 (in Chinese)
[16] Olbright G R and Peyghambarian N 1986 Appl. Phys. Lett. 48 1184
[17] Marder S R, Gorman C B, Meyers F, Perry J W, Bourhill G, Bredas J L and Pierce B M 1994 Science 265 632
[18] Butcher P N and Cotter D 1990 The Elements of Nonlinear Optics (New York: Cambridge University Press) p.~78
[19] Long D A 2002 The Raman Effect (New York: John Wiley & Sons Ltd) p.~202
[20] Zhou Y Q 1991 Molecular Structure Analysis (Beijing: Chemical Industry Press) p.~248 (in Chinese)
[21] Kell T H 1965 Phys. Rev. 140 A 601
[22] Maloney C and Blau W 1987 J. Opt. Soc. Am. B 4 1035
[23] Rimai L, Heyde M E and Gill D 1973 J. Am. Chem. Soc. 95 4493
[24] Beljonne D, Cornil J, Shuai Z, Bredas J L, Rohifing F, Bradley D D C, Torruellas W E, Ricci V and Stegeman G I 1997 Phys. Rev. B 55 1505
[1] Investigation of hydrogen bonding in neat dimethyl sulfoxide and binary mixture (dimethyl sulfoxide + water) by concentration-dependent Raman study and ab initio calculation
Ouyang Shun-Li(欧阳顺利), Wu Nan-Nan(吴楠楠), Liu Jing-Yao(刘靖尧),Sun Cheng-Lin(孙成林), Li Zuo-Wei(里佐威), and Gao Shu-Qin(高淑琴). Chin. Phys. B, 2010, 19(12): 123101.
[2] Influence of pressure effect on Fermi resonance in binary solution
Jiang Xiu-Lan(蒋秀兰), Yang Guang(杨光), Li Dong-Fei(李东飞), Zhou Mi(周密), Sun Cheng-Lin(孙成林), Gao Shu-Qin(高淑琴), and Li Zuo-Wei(里佐威). Chin. Phys. B, 2010, 19(10): 103301.
[3] Density functional study on chirospectra of hydrogen-bonded systems X-(H2O) 3 (X = F,Cl,Br,I)
Mang Chao-Yong(莽朝永),Li Zhen-Gui(李珍贵), and Wu Ke-Chen(吴克琛). Chin. Phys. B, 2010, 19(4): 043601.
[4] Surface-enhanced resonance Raman scattering spectroscopy of single R6G molecules
Zhou Zeng-Hui (周增会), Liu Li (刘力), Wang Gui-Ying (王桂英), Xu Zhi-Zhan (徐至展). Chin. Phys. B, 2006, 15(1): 126-131.
No Suggested Reading articles found!