Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(3): 037102    DOI: 10.1088/1674-1056/19/3/037102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic structure and optical properties of the red and yellow mercuric iodides

Xu Bin(徐斌) and Lv Jian(吕健)
Department of Mathematics and Information Sciences, North China Institute of Water Conservancy and Hydroelectric Power, Zhengzhou 450011, China
Abstract  With the help of the ab initio full-potential linearized augmented plane wave (FPLAPW) method, calculations of the electronic structure and linear optical properties are carried out for red HgI2 and yellow HgI2. It is found that the red HgI2 has a direct gap of 1.22834 eV and the yellow HgI2 has an indirect gap of 2.11222 eV. For the red HgI2, the calculated optical spectra are qualitatively in agreement with the experimental data. Furthermore, the origins of the different peaks of $\varepsilon_2(\omega)$ are discussed. Our calculated anisotropic dielectric function of the red HgI2 is a nice match with the experimental results. Our calculated results are able to reproduce the overall trend of the experimental reflectivity spectra. Although no comparable experimental and theoretical results are available, clearly, the above proves the reliability of our calculations, suggesting that our calculations should be convincing for the yellow HgI2. Finally, the different optical properties are discussed.
Keywords:  ab initio      electronic band structure      optical properties      semiconductor  
Received:  24 April 2009      Revised:  15 September 2009      Accepted manuscript online: 
PACS:  71.15.Ap (Basis sets (LCAO, plane-wave, APW, etc.) and related methodology (scattering methods, ASA, linearized methods, etc.))  
  71.20.Nr (Semiconductor compounds)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  78.40.Fy (Semiconductors)  
Fund: Project supported by Program for Science and Technology Innovation Talents in Universities of Henan Province, China (Grant No.~2008HASTIT008), the National Natural Science Foundation of China (Grant No.~10574039) and the Key Project Foundation of Science and Technology of He'nan Province, China (Grant No.~092102210166).

Cite this article: 

Xu Bin(徐斌) and Lv Jian(吕健) Electronic structure and optical properties of the red and yellow mercuric iodides 2010 Chin. Phys. B 19 037102

[1] Ponpon J P, Stuck R, Siffert P, Meyer B and Schwab C 1975 IEEE Trans. Nucl. Sci . NS-22 182
[2] Whited R C and Schieber M 1979 Nucl. Instrum. Methods 162 119
[3] Dabrowski A J, Szymczyk W M, Iwanczyk J S, Kusmiss J H, Drummond Wand Ames L 1983 Nucl. Instrum. Methods Phys. Res. 213 89
[4] Wong D, Schlesinger T E, James R B, Ortale C, Berg L and Schnepple WF 1988 J. Appl. Phys. 64 2049
[5] Gerrish V and Berg L 1990 Nucl. Instrum. Methods Phys. Res .A 294 41
[6] Burger A, Morgon S H, Silberman E, Nason D and Cheng A Y 1992 Nucl. Instrum. Methods Phys. Res. A 322 427
[7] Bube R H 1957 Phys. Rev. 106 703
[8] Brodin M S, Kadan V N and Matsko M G 1985 Sov. Phys. SolidState 27 477
[9] Tubbs M R 1972 Phys. Status Solid B 49 11
[10] Stuck R, Muller J C, Ponpon J P, Scharager C, Schwab C and Siffert P1976 J. Appl. Phys. 47 1545
[11] Levi A, Schieber M M and Burshtein Z 1985 J. Appl. Phys.57 1944
[12] Ottaviani G, Canali C and Quaranta A A 1975 IEEE Trans.Nucl. Sci . NS-22 192
[13] Minder R, Ottaviani G and Canali C 1976 J. Phys. Chem.Solids 37 417
[14] Gonzalez M and Ibarra A 1995 Phys. Rev. B 51 13786
[15] Yao H, Johs B and James R B 1997 Phys. Rev. B 56 9414
[16] Tyagi P and Vedeshwar A G 2001 Phys. Rev. B 63 245315
[17] Alexander W B, Sandoval J and Berg L 2004 Proc. SPIE 4540 106
[18] Turner D E and Harmon B N 1989 Phys. Rev. B 40 10516
[19] Chang Y C and James R B 1992 Phys. Rev. B 46 15040
[20] Howard S T 1994 J. Phys. Chem . 98 6110
[21] Ahuja R, Eriksson O, Johansson B, Auluck S and Wills J M 1996 Phys. Rev. B 54 10419
[22] Ortega F, Caselli E, Lester M and Santiago M 1998 Phys.Stat. Sol. (b) 206 R7
[23] Ayres F, Machado W V M, Justo J F and Assali L V C 2003 Physica B 340--342 918
[24] Ayres F, Assali L V C, Machado W V M and Justo J F 2006 Appl. Phys. Lett. 88 011918
[25] Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2002 Computer Code WIEN2K (Vienna University of Technology),improved and updated Unix version of the original [Blaha P, SchwarzK, Sorantin P and Trickey S B 1990 Comput. Phys. Commun .59 399
[26] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett.77 3865
[27] Lynch W D In: Palik E D (Ed.) 1985 Handbook of OpticalsConstants of Solids (New York: Academic Press)
[28] Bassani F and Parravicini G P1975 Electronic States andOptical Transitions in Solids (Oxford: Pergamon Press)
[29] Saha S, Sinha T P and Mookerjee A 2000 Phys. Rev. B62 8828
[30] Murnaghan F D 1944 Proc. Natl. Acad. Sci . USA 30 244
[31] Jeffrey G A and Vlasse M 1967 Inorganic Chemistry 6 396
[32] Wykoff R W G 1963 Crystal Structures (New York:Interscience Publishers) Vol. 1
[33] Chester M and Colemann C C 1970 J. Phys. Chem. Solids 32 223
[34] Ahuja R, Eriksson O, Johansson B, Auluck S and Wills J M 1996 Phys. Rev. B 54 10419
[35] Rashkeev S N and Lambrecht W R L 2001 Phys. Rev. B63 165212
[36] Onida G, Reining L and Rubio A 2002 Rev. Mod. Phys.74 601
[37] Ouyang C Y, Xiong Z H, Ouyang Q Z, Liu G D, Ye Z Q and Lei M S 2006 Chin. Phys. 15 1585
[38] Jin Y J, Li Z Y and Lin J B 2007 Chin. Phys. 16 506
[39] Kong X L, Hou QY, Qi Y H and Zhi X H 2009 Acta Phys. Sin.58 4128 (in Chinese)
[40] Lin Z, Guo Z Y, Bi Y J and Dong Y C 2009 Acta Phys. Sin.58 4128 (in Chinese)
[41] Peng L P, Xu L and Yin J W 2007 Acta Phys. Sin. 56 1585 (in Chinese)
[42] Anedda A, Grilli E, Guzzi M, Raga F and Serpi A 1981 SolidState Commun . 39 1121
[43] Kaneko Y, Morimoto K and Koda T 1983 J. Phys. Soc. Japan 52 4385
[44] Fox M 2001 Optical Properties of Solids (New York: OxfordUniversity Press)
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[4] Crystal and electronic structure of a quasi-two-dimensional semiconductor Mg3Si2Te6
Chaoxin Huang(黄潮欣), Benyuan Cheng(程本源), Yunwei Zhang(张云蔚), Long Jiang(姜隆), Lisi Li(李历斯), Mengwu Huo(霍梦五), Hui Liu(刘晖), Xing Huang(黄星), Feixiang Liang(梁飞翔), Lan Chen(陈岚), Hualei Sun(孙华蕾), and Meng Wang(王猛). Chin. Phys. B, 2023, 32(3): 037802.
[5] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[6] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[7] A field-effect WSe2/Si heterojunction diode
Rui Yu(余睿), Zhe Sheng(盛喆), Wennan Hu(胡文楠), Yue Wang(王越), Jianguo Dong(董建国), Haoran Sun(孙浩然), Zengguang Cheng(程增光), and Zengxing Zhang(张增星). Chin. Phys. B, 2023, 32(1): 018505.
[8] Lateral characteristics improvements of DBR laser diode with tapered Bragg grating
Qi-Qi Wang(王琦琦), Li Xu(徐莉), Jie Fan(范杰), Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2022, 31(9): 094204.
[9] Single-mode lasing in a coupled twin circular-side-octagon microcavity
Ke Yang(杨珂), Yue-De Yang(杨跃德), Jin-Long Xiao(肖金龙), and Yong-Zhen Huang(黄永箴). Chin. Phys. B, 2022, 31(9): 094205.
[10] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[11] High power semiconductor laser array with single-mode emission
Peng Jia(贾鹏), Zhi-Jun Zhang(张志军), Yong-Yi Chen(陈泳屹), Zai-Jin Li(李再金), Li Qin(秦莉), Lei Liang(梁磊), Yu-Xin Lei(雷宇鑫), Cheng Qiu(邱橙), Yue Song(宋悦), Xiao-Nan Shan(单肖楠), Yong-Qiang Ning(宁永强), Yi Qu(曲轶), and Li-Jun Wang(王立军). Chin. Phys. B, 2022, 31(5): 054209.
[12] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[13] Doublet luminescence due to coexistence of excitons and electron-hole plasmas in optically excited CH3NH3PbBr3 single crystal
Jie Wang(王杰), Guang-Zhe Ma(马广哲), Lu Cao(曹露), Min Gao(高敏), and Dong Shi(石东). Chin. Phys. B, 2022, 31(4): 047104.
[14] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[15] Determination of the surface states from the ultrafast electronic states in a thermoelectric material
Tongyao Wu(吴桐尧), Hongyuan Wang(王洪远), Yuanyuan Yang(杨媛媛), Shaofeng Duan(段绍峰), Chaozhi Huang(黄超之), Tianwei Tang(唐天威), Yanfeng Guo(郭艳峰), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2022, 31(2): 027902.
No Suggested Reading articles found!